The understanding of spatio-temporal variation in land use and land cover (LULC) patterns is crucial for managing catchment land use planning, as it directly influences of tropical reservoir water quality and the subsequent Nutrient Contamination (NC) of unmonitored water bodies. The current research attempts to accurately measure the influence of LULC and its associated determinants on the quantities of NC loads by using Chl-a as a proxy, within tropical reservoirs, i.e.
View Article and Find Full Text PDFWater quality monitoring of reservoirs is currently a significant challenge in the tropical regions of the world due to limited monitoring stations and hydrological data. Remote sensing techniques have proven to be a powerful tool for continuous real-time monitoring and assessment of tropical reservoirs water quality. Although many studies have detected chlorophyll-a (Chl-a) concentrations as a proxy to represent nutrient contamination, using Sentinel 2 for eutrophic or hypereutrophic inland water bodies, mainly reservoirs, minimal efforts have been made for oligotrophic and mesotrophic reservoirs.
View Article and Find Full Text PDF