Graphene oxide and functionalized graphenic materials (FGMs) have promise as platforms for imparting programmable bioactivity to poly(methyl methacrylate) (PMMA)-based bone cement. To date, however, graphenic fillers have only been feasible in PMMA cements at extremely low loadings, limiting the bioactive effects. At higher loadings, graphenic fillers decrease cement strength by aggregating and interfering with curing process.
View Article and Find Full Text PDF