Ultrasound is widely used for tissue imaging such as breast cancer diagnosis; however, fundamental challenges limit its integration with wearable technologies, namely, imaging over large-area curvilinear organs. We introduced a wearable, conformable ultrasound breast patch (cUSBr-Patch) that enables standardized and reproducible image acquisition over the entire breast with less reliance on operator training and applied transducer compression. A nature-inspired honeycomb-shaped patch combined with a phased array is guided by an easy-to-operate tracker that provides for large-area, deep scanning, and multiangle breast imaging capability.
View Article and Find Full Text PDFThe application of machine learning (ML) techniques to digitized images of biopsied cells for breast cancer diagnosis is an active area of research. We hypothesized that reducing noise in the data would lead to an increase in classification accuracies. To test this hypothesis, we first compared several classification techniques in their ability to discriminate between malignant and benign breast cancer tumors using the Wisconsin Breast Cancer Data Set and subsequently evaluated the effect of noise reduction techniques on model accuracies.
View Article and Find Full Text PDFThe COVID-19 pandemic has emerged as a serious global health crisis, with the predominant morbidity and mortality linked to pulmonary involvement. Point-of-Care ultrasound (POCUS) scanning, becoming one of the primary determinative methods for its diagnosis and staging, requires, however, close contact of healthcare workers with patients, therefore increasing the risk of infection. This work thus proposes an autonomous robotic solution that enables POCUS scanning of COVID-19 patients' lungs for diagnosis and staging.
View Article and Find Full Text PDF