Long non-coding RNAs (lncRNAs) contribute to the regulation of gene expression in response to intra- or extracellular signals but the underlying molecular mechanisms remain largely unexplored. Here, we identify an uncharacterized lncRNA as a central player in shaping the meiotic gene expression program in fission yeast. We report that this regulatory RNA, termed mamRNA, scaffolds the antagonistic RNA-binding proteins Mmi1 and Mei2 to ensure their reciprocal inhibition and fine tune meiotic mRNA degradation during mitotic growth.
View Article and Find Full Text PDFThe universal L-shaped tertiary structure of tRNAs is maintained with the help of nucleotide modifications within the D- and T-loops, and these modifications are most extensive within hyperthermophilic species. The obligate-commensal Nanoarchaeum equitans and its phylogenetically-distinct host Ignicoccus hospitalis grow physically coupled under identical hyperthermic conditions. We report here two fundamentally different routes by which these archaea modify the key conserved nucleotide U54 within their tRNA T-loops.
View Article and Find Full Text PDFA method based on supercritical fluid chromatography coupled to high resolution mass spectrometry for the profiling of canonical and modified nucleosides was optimized, and compared to classical reverse-phase liquid chromatography in terms of separation, number of detected modified nucleosides and sensitivity. Limits of detection and quantification were measured using statistical method and quantifications of twelve nucleosides of a tRNA digest from E. coli are in good agreement with previously reported data.
View Article and Find Full Text PDFIn most eubacteria, the minor AUA isoleucine codon is decoded by tRNAIle2, which has a lysidine (L) in the anticodon loop. The lysidine is introduced by tRNAIle-lysidine synthetase (TilS) through post-transcriptional modification of cytidine to yield an LAU anticodon. Some bacteria, Lactobacillus plantarum for example, possess two tRNAIle2(UAU) genes in addition to, two tRNAIle2(CAU) genes and the tilS gene.
View Article and Find Full Text PDFThe human tRNA m ( 5) C methyltransferase Misu is a novel downstream target of the proto-oncogene Myc that participates in controlling cell division and proliferation. Misu catalyzes the transfer of a methyl group from S-adenosyl-L-methionine to carbon 5 of cytosines in tRNAs. It was previously shown to catalyze in vitro the intron-dependent formation of m ( 5) C at the first position of the anticodon (position 34) within the human pre-tRNA (Leu) (CAA).
View Article and Find Full Text PDFMethyltransferase enzymes that use S-adenosylmethionine as a cofactor to catalyze 5-methyl uridine (m(5)U) formation in tRNAs and rRNAs are widespread in Bacteria and Eukaryota, but are restricted to the Thermococcales and Nanoarchaeota groups amongst the Archaea. The RNA m(5)U methyltransferases appear to have arisen in Bacteria and were then dispersed by horizontal transfer of an rlmD-type gene to the Archaea and Eukaryota. The bacterium Escherichia coli has three gene paralogs and these encode the methyltransferases TrmA that targets m(5)U54 in tRNAs, RlmC (formerly RumB) that modifies m(5)U747 in 23S rRNA, and RlmD (formerly RumA) the archetypical enzyme that is specific for m(5)U1939 in 23S rRNA.
View Article and Find Full Text PDFThe human tRNA m(5)C methyltransferase is a potential target for anticancer drugs because it is a novel downstream target of the proto-oncogene myc, mediating Myc-induced cell proliferation. Sequence comparisons of RNA m(5)C methyltransferases indicate that the eukaryotic enzymes possess, in addition to a conserved catalytic domain, a large characteristic carboxyl-terminal extension. To gain insight into the function of this additional domain, the modular architecture of the yeast tRNA m(5)C methyltransferase orthologue, Trm4p, was studied.
View Article and Find Full Text PDFSequence comparison of several RNA m(5)C methyltransferases identifies two conserved cysteine residues that belong to signature motifs IV and VI of RNA and DNA methyltransferases. While the cysteine of motif IV is used as the nucleophilic catalyst by DNA m(5)C methyltransferases, this role is fulfilled by the cysteine of motif VI in Escherichia coli 16S rRNA m(5)C967 methyltransferase, but whether this conclusion applies to other RNA m(5)C methyltransferases remains to be verified. Yeast tRNA m(5)C methyltransferase Trm4p is a multisite-specific S-adenosyl-L-methionine-dependent enzyme that catalyzes the methylation of cytosine at C5 in several positions of tRNA.
View Article and Find Full Text PDFMembers of the archease superfamily of proteins are represented in all three domains of life. Archease genes are generally located adjacent to genes encoding proteins involved in DNA or RNA processing. Archease have therefore been predicted to play a modulator or chaperone role in selected steps of DNA or RNA metabolism, although the roles of archeases remain to be established experimentally.
View Article and Find Full Text PDFThe tRNA:m2(2)G10 methyltransferase of Pyrococus abyssi (PAB1283, a member of COG1041) catalyzes the N2,N2-dimethylation of guanosine at position 10 in tRNA. Boundaries of its THUMP (THioUridine synthases, RNA Methyltransferases and Pseudo-uridine synthases)--containing N-terminal domain [1-152] and C-terminal catalytic domain [157-329] were assessed by trypsin limited proteolysis. An inter-domain flexible region of at least six residues was revealed.
View Article and Find Full Text PDFThe transmissible spongiform encephalopathies are fatal neurodegenerative diseases that are associated with the accumulation of a protease-resistant form of the cellular prion protein (PrP). Although PrP is highly conserved and widely expressed in vertebrates, its function remains a matter of speculation. Indeed PrP null mice develop normally and are healthy.
View Article and Find Full Text PDFDuring HIV reverse transcription, (+) strand DNA synthesis is primed by an RNase H-resistant sequence, the polypurine tract, and continues as far as a 18-nt double-stranded RNA region corresponding to the 3' end of tRNALys,3 hybridized to the viral primer binding site (PBS). Before (+) strand DNA transfer, reverse transcriptase (RT) needs to unwind the double-stranded tRNA-PBS RNA in order to reverse-transcribe the 3' end of primer tRNALys,3. Since the detailed mechanism of (+) strand DNA transfer remains incompletely understood, we developed an in vitro system to closely examine this mechanism, composed of HIV 5' RNA, natural modified tRNALys,3, synthetic unmodified tRNALys,3 or oligonucleotides (RNA or DNA) complementary to the PBS, as well as the viral proteins RT and nucleocapsid protein (NCp7).
View Article and Find Full Text PDFWe have investigated the specificity of the eukaryotic enzymatic machinery that transforms adenosine at position 37 (3' adjacent to anticodon) of several tRNAs into threonylcarbamoyladenosine (t6A37). To this end, 28 variants of yeast initiator tRNAMet and yeast tRNAVal, devoid of modified nucleotide, were produced by in vitro transcription with T7 polymerase of the corresponding synthetic tRNA genes and microinjected into the cytoplasm of Xenopus laevis oocytes. Threonylcarbamoyl incorporation was analyzed in tRNA transcripts mutated in the anticodon loop by substitution, deletion, or Insertion of nucleotides, or in the overall 3D structure of the tRNA by altering critical tertiary interactions.
View Article and Find Full Text PDFEarlier work by two independent groups has established the fact that anticodons GAU and LAU of Escherichia coli tRNAIle isoacceptors play a critical role in the tRNA identity. Yeast possesses two isoleucine transfer RNAs, a major one with anticodon IAU and a minor one with anticodon PsiAPsi which are derived from the post-transcriptional modification of AAU and UAU gene sequences, respectively. We present direct evidence which reveals that inosine is a positive determinant for yeast isoleucyl-tRNA synthetase.
View Article and Find Full Text PDFIn yeast, inosine is found at the first position of the anticodon (position 34) of seven different isoacceptor tRNA species, while in Escherichia coli it is present only in tRNAArg. The corresponding tRNA genes all have adenosine at position 34. Using as substrates in vitro T7-runoff transcripts of 31 plasmids carrying each natural of synthetic tRNA gene harbouring an anticodon with adenosine 34, we have characterised a yeast enzyme that catalyses the conversion of adenosine 34 to inosine 34.
View Article and Find Full Text PDFInosine (6-deaminated adenosine) is a characteristic modified nucleoside that is found at the first anticodon position (position 34) of several tRNAs of eukaryotic and eubacterial origins, while N1-methylinosine is found exclusively at position 37 (3' adjacent to the anticodon) of eukaryotic tRNA(Ala) and at position 57 (in the middle of the psi loop) of several tRNAs from halophilic and thermophilic archaebacteria. Inosine has also been recently found in double-stranded RNA, mRNA and viral RNAs. As for all other modified nucleosides in RNAs, formation of inosine and inosine derivative in these RNA is catalysed by specific enzymes acting after transcription of the RNA genes.
View Article and Find Full Text PDF