Publications by authors named "Auweter H"

Background: Surfactants are known to enhance the foliar uptake of agrochemicals. It was the aim of this study to compare the enhancing effect of three polydisperse surfactants (Brij 30, Plurafac LF300 and Wettol LF700) and five monodisperse alcohol ethoxylates (C12 E3, C12 E4, C12 E5, C12 E6 and C12 E8) on (14)C-epoxiconazole diffusion in cuticles isolated from cherry laurel (Prunus laurocerasus L.).

View Article and Find Full Text PDF

Effective plant protection agents are readily available and well implemented in industry. However, delivery to the plant and application on the leaf are processes that still need to be optimized. Up to now plant protection formulations represent either emulsion or suspension concentrates that often contain environmentally harmful organic solvents and/or adjuvants.

View Article and Find Full Text PDF

We investigated the characteristics of heterogeneous layers composed of linear hydrolyzed polyvinylamine and branched polyethyleneimine adsorbed at silica/water interfaces. The studies also included heterogeneous layers where branched polyethyleneimine was replaced by polyethyleneimine modified by grafting with C12-C22 alkyl chains. Surface area exclusion chromatography was used to determine the interfacial relaxation and surface affinity of the polymer molecules within homogeneous layers.

View Article and Find Full Text PDF

Surface area exclusion chromatography was used to investigate the adsorption characteristics of the highly branched polyethyleneimine (PEI) molecule and of a related molecule resulting from the grafting of PEI with C12 to C22 alkyl chains. The interfacial relaxation and surface affinity of the two polymers was determined in homogeneous and heterogeneous layers. The presence of hydrophobic moieties within the branched morphology of the grafted PEI molecule was found to modify the adsorption histogram as compared to bare PEI and to lead to greater interfacial stability.

View Article and Find Full Text PDF

The obviously visible aggregation of suspended colloidal particles resulting from the addition of polyvinylamine to the aqueous dispersion of polystyrene latex particles bearing surface sulfate groups set in with a delay of 24 h. The aggregation mechanisms and the fractal dimension of the aggregates were derived from the variations with time of the weight and number averaged masses of the aggregates as well as of the weight averaged harmonic mean diameter of the size distribution. Since the establishment of starved layers was determined to be relatively fast and to leave the liquid phase free of polymer, the delay for the obvious destabilization was attributed to the reconformation of adsorbed macromolecules that was expected to be extremely slow.

View Article and Find Full Text PDF

Surface area exclusion chromatography (SAEC) was employed to determine the stability characteristics of saturated homogeneous layers when interfacial exchange or transfer of molecules was promoted. In these experiments, the first polymer layer was established by elution of a column composed of stacked glass-fiber filters with one polymer. Then, after displacement of the void by water, the second polymer was subsequently injected under the same elution conditions.

View Article and Find Full Text PDF

Surface area exclusion chromatography (SAEC) was employed to determine the individual relaxation of polymer molecules within a saturated heterogeneous layer composed of two polymers of different molecular characteristics. The investigations focused on three systems differing in molecular weight and/or hydrolysis grade. The molecular relaxation process was determined to be different within the heterogeneous layer when compared with the behavior of the same polymer in the homogeneous layer.

View Article and Find Full Text PDF

Surface area exclusion chromatography was used to investigate the adsorption and reconformation characteristics of hydrolyzed polyvinylamine molecules at silica/water interfaces employing radiolabeled polymers. The polymer solution was injected at the inlet of the column, whereas the polymer was successively adsorbed on the stacked glass-fiber filters constituting the stationary phase of the column. The filters and effluent samples collected at the outlet were individually analyzed for radioactivity content, which provided the adsorption histogram and the relative affinity of the various polymers.

View Article and Find Full Text PDF

Thin films of cellulose are advantageous for analytical studies in aqueous environments to investigate various factors determining the performance of cellulose-based products. However, the weak fixation of cellulose layers on common carrier materials often limits this approach. To address this problem, we suggest a novel maleic anhydride copolymer precoating technique which allows for the covalent attachment of cellulose thin films through esterification.

View Article and Find Full Text PDF

The adsorption of poly(vinylamine) (PVA) on poly(styrene sulfate) latex particles is studied, and its consequences on the charging behavior and suspension stability are investigated. The adsorption process is assessed by batch depletion experiments and time-resolved electrophoretic mobility measurements. The adsorption of PVA appears to be basically irreversible.

View Article and Find Full Text PDF

Surfactant-free oil-in-water emulsions prepared with temperature and pH sensitive poly(N-isopropylacrylamide)(PNIPAM) microgel particles offer unprecedented control of emulsion stability.

View Article and Find Full Text PDF

Surface area exclusion chromatography was used to investigate the reconformation of fully hydrolyzed polyvinylamine. The polymer is adsorbed on stacked glass fiber filters constituting the stationary phase while the polymer solution is injected at the inlet of the chromatography column. From numerical simulation and experimental chromatograms of nonreconforming polyelectrolytes, the amount of polymer adsorbed per filter represented as a function of the filter position along the column (the histogram) was determined to be continuously decreasing and not to depend on the rate of elution.

View Article and Find Full Text PDF

Adsorption from electrolyte solutions of fully hydrolyzed polyvinylamine on cellulose fibers was investigated by supplying the polymer to the fibers at controlled rate. This was implemented by employing a reactor only open to the fluid in which the fiber dispersion were confined and homogenized. The adsorbed layers may be defined as diffuse or dense layers.

View Article and Find Full Text PDF

Adsorption of fully hydrolyzed polyvinylamine on cellulose fibers in the short term was investigated by supplying the polymer to the fibers, first instantaneously by pouring the polymer solution into a jar containing the fiber dispersion (jar experiments) and second, at controlled rates (the reactor experiments). In the latter case, the rate of supply of polymer to the fiber dispersion confined in the reactor was monitored by setting the concentration of the solution being injected at a controlled rate. The concentration of the polymer solution exerts a paramount influence on the kinetics of adsorption and on the amount of polymer adsorbed at (or near) fiber surface saturation, while the rate of polymer supply only plays a minor role.

View Article and Find Full Text PDF

A combination of analytical methods and molecular modeling calculations has provided a detailed picture of the supramolecular and microscopic structure of precipitated lipophilic carotenoids. The nanoparticles have a core/shell structure (see schematic representation) in which the particle core (120 nm) consists of a variety of molecular aggregates of different sizes, and the shell (40 nm) consists of an adsorbed gelatin layer.

View Article and Find Full Text PDF