Cellular mechanical properties influence cellular functions across pathological and physiological systems. The observation of these mechanical properties is limited in part by methods with a low throughput of acquisition or with low accessibility. To overcome these limitations, we have designed, developed, validated, and optimized a microfluidic cellular deformation system (MCDS) capable of mechanotyping suspended cells on a population level at a high throughput rate of ∼300 cells pers second.
View Article and Find Full Text PDFAquaporins (AQPs), transmembrane water-conducting channels, have earned a great deal of scrutiny for their critical physiological roles in healthy and disease cell states, especially in the biomedical field. Numerous methods have been implemented to elucidate the involvement of AQP-mediated water transport and downstream signaling activation in eliciting whole cell, tissue, and organ functional responses. To modulate these responses, other methods have been employed to investigate AQP druggability.
View Article and Find Full Text PDF