Layer 6 corticothalamic (L6 CT) neurons provide massive input to the thalamus, and these feedback connections enable the cortex to influence its own sensory input by modulating thalamic excitability. However, the functional role(s) feedback serves during sensory processing is unclear. One hypothesis is that CT feedback is under the control of extrasensory signals originating from higher-order cortical areas, yet we know nothing about the mechanisms of such control.
View Article and Find Full Text PDFIn the rodent whisker system, active sensing and sensorimotor integration are mediated in part by the dynamic interactions between the motor cortex (M1) and somatosensory cortex (S1). However, understanding these dynamic interactions requires knowledge about the synapses and how specific neurons respond to their input. Here, we combined optogenetics, retrograde labeling, and electrophysiology to characterize the synaptic connections between M1 and layer 5 (L5) intratelencephalic (IT) and pyramidal tract (PT) neurons in S1 of mice (both sexes).
View Article and Find Full Text PDFLayer 6 corticothalamic (L6 CT) neurons provide massive input to the thalamus, and these feedback connections enable the cortex to influence its own sensory input by modulating thalamic excitability. However, the functional role(s) feedback serves during sensory processing is unclear. One hypothesis is that CT feedback is under the control of extra-sensory signals originating from higher-order cortical areas, yet we know nothing about the mechanisms of such control.
View Article and Find Full Text PDFIn the rodent whisker system, active sensing and sensorimotor integration are mediated in part by the dynamic interactions between the motor cortex (M1) and somatosensory cortex (S1). However, understanding these dynamic interactions requires knowledge about the synapses and how specific neurons respond to their input. Here, we combined optogenetics, retrograde labeling, and electrophysiology to characterize the synaptic connections between M1 and layer 5 (L5) intratelencephalic (IT) and pyramidal tract (PT) neurons in S1 of mice (both sexes).
View Article and Find Full Text PDFLayer 6 corticothalamic (L6 CT) neurons are in a strategic position to control sensory input to the neocortex, yet we understand very little about their functions. Apart from studying their anatomic, physiological, and synaptic properties, most recent efforts have focused on the activity-dependent influences CT cells can exert on thalamic and cortical neurons through causal optogenetic manipulations. However, few studies have attempted to study them during behavior.
View Article and Find Full Text PDFShort-term plasticity regulates the strength of central synapses as a function of previous activity. In the neocortex, direct synaptic interactions between areas play a central role in cognitive function, but the activity-dependent regulation of these long-range corticocortical connections and their impact on a postsynaptic target neuron is unclear. Here, we use an optogenetic strategy to study the connections between mouse primary somatosensory and motor cortex.
View Article and Find Full Text PDFGroup I metabotropic glutamate receptors (mGluR), including mGluR1 and mGluR 5 (mGluR1/5), are coupled to Gq and modulate activity-dependent synaptic plasticity. Direct activation of mGluR1/5 causes protein translation-dependent long-term depression (LTD). Although it has been established that intracellular Ca(2+) and the Gq-regulated signaling molecules are required for mGluR1/5 LTD, whether and how Ca(2+) regulates Gq signaling and upregulation of protein expression remain unknown.
View Article and Find Full Text PDFChronic, low-level perinatal exposure to methylmercury (MeHg) is associated with neurological and motor deficits that appear to result from cerebellar dysfunction. Neuropathological studies suggest that these deficits are due to impaired cerebellar granule cell (CGC) migration. Although neuronal migration in vivo and in vitro has been shown to be impaired during acute and/or high level exposure to MeHg, the cellular effects of chronic exposure to submicromolar and micromolar levels of MeHg during development are not clear.
View Article and Find Full Text PDF2,4-Dithiobiuret (DTB) causes ascending motor weakness when given chronically to rodents. In muscles of animals with DTB-induced weakness, quantal release of acetylcholine (ACh) is impaired. We examined in detail the structural changes that occurred at neuromuscular junctions and their associated Schwann cells of extensor digitorum longus (EDL) muscles of male rats treated with DTB to the onset of muscle weakness, 5-8 days.
View Article and Find Full Text PDFChronic treatment of rodents with 2,4-dithiobiuret (DTB) induces a neuromuscular syndrome of flaccid muscle weakness that mimics signs seen in several human neuromuscular disorders such as congenital myasthenic syndromes, botulism, and neuroaxonal dystrophy. DTB-induced muscle weakness results from a reduction of acetylcholine (ACh) release by mechanisms that are not yet clear. The objective of this study was to determine if altered release of ACh during DTB-induced muscle weakness was due to impairments of synaptic vesicle exocytosis, endocytosis, or internal vesicular processing.
View Article and Find Full Text PDFIn previous studies, 2,4-dithiobiuret (DTB) caused a delayed onset neuromuscular weakness in rats which was associated with decreased quantal content, alterations in postsynaptic ion channel properties, and abnormalities in nerve terminal ultrastructure. The latter include features typical of degenerating or diseased motor endplates as well as a marked proliferation of smooth endoplasmic reticulum (SER), swelling of mitochondria and evidence for a decreased in intraterminal calcium concentrations at early stages of intoxication (Jones, 1989, Acta Neuropathol. 78:72).
View Article and Find Full Text PDFWe characterized a subset of leech sensory afferents, the photoreceptors, in terms of their molecular composition, anatomical distribution, and candidate postsynaptic partners. For reagents, we used an antiserum generated against purified LL35, a 35 kD leech lactose-binding protein (galectin); monoclonal antibody (mAb) Lan3-2, which is specific for a mannose-containing epitope common to the full set of sensory afferents; and dye injections. Photoreceptors differ from other types of sensory afferents by their abundant expression of galectin.
View Article and Find Full Text PDF