Publications by authors named "Ausubel F"

Background: Antimicrobial resistance is a major public health threat, and new agents are needed. Computational approaches have been proposed to reduce the cost and time needed for compound screening.

Aims: A machine learning (ML) model was developed for the in silico screening of low molecular weight molecules.

View Article and Find Full Text PDF

Host-microbe interactions constitute dynamical systems that can be represented by mathematical formulations that determine their dynamic nature and are categorized as deterministic, stochastic, or chaotic. Knowing the type of dynamical interaction is essential for understanding the system under study. Very little experimental work has been done to determine the dynamical characteristics of host-microbe interactions, and its study poses significant challenges.

View Article and Find Full Text PDF

Infections caused by Staphylococcus aureus, notably methicillin-resistant S. aureus (MRSA), pose treatment challenges due to its ability to tolerate antibiotics and develop antibiotic resistance. The former, a mechanism independent of genetic changes, allows bacteria to withstand antibiotics by altering metabolic processes.

View Article and Find Full Text PDF

Acne vulgaris is a complex skin disease involving infection by Cutibacterium acnes, inflammation, and hyperkeratinization. We evaluated the activity of the retinoid 6-[3-(adamantyl)-4-hydroxyphenyl]-2-naphthalene carboxylic acid (CD437) and 16 other retinoid analogs as potential anti- compounds and found that CD437 displayed the highest antimicrobial activity with an MIC against (ATCC 6919 and HM-513) of 1 μg/mL. CD437 demonstrated an MBC of 2 μg/mL compared to up to 64 μg/mL for the retinoid adapalene and up to 16 μg/mL for tetracycline, which are commonly used clinically to treat acne.

View Article and Find Full Text PDF

Host-microbe interactions constitute dynamical systems that can be represented by mathematical formulations that determine their dynamic nature, and are categorized as deterministic, stochastic, or chaotic. Knowing the type of dynamical interaction is essential for understanding the system under study. Very little experimental work has been done to determine the dynamical characteristics of host-microbe interactions and its study poses significant challenges.

View Article and Find Full Text PDF

The opportunistic human pathogen Staphylococcus aureus can evade antibiotics by acquiring antibiotic resistance genes or by entering into a non-growing dormant state. Moreover, the particular circumstances of a specific infection site, such as acidity or anaerobicity, often weaken antibiotic potency. Decreased bacterial susceptibility combined with diminished antibiotic potency is responsible for high failure rates when treating S.

View Article and Find Full Text PDF

Pseudomonas aeruginosa is an opportunistic bacterial pathogen that exhibits pathogenicity in an unusually broad range of plants and animals, and it is of interest to study the roles of particular virulence-related factors in diverse hosts. The production of many P. aeruginosa virulence factors is under the control of a quorum sensing (QS) signaling network, which has three interconnected branches that engage in intricate cross talk: Las, Rhl, and MvfR.

View Article and Find Full Text PDF

Pioneering microbial genomic surveys have revealed numerous untapped biosynthetic gene clusters, unveiling the great potential of new natural products. Here, using a combination of genome mining, mutasynthesis, and activity screening in an infection model comprising Caenorhabditis elegans and Pseudomonas aeruginosa, we identified candidate virulence-blocking amychelin siderophore compounds from actinomycetes. Subsequently, we developed unreported analogs of these virulence-blocking siderophores with improved potency by exploiting an Amycolatopsis methanolica strain 239 chorismate to salicylate a biosynthetic subpathway for mutasynthesis.

View Article and Find Full Text PDF

Sphingosine-1-phophate (S1P) is a sphingolipid-derived signaling molecule that controls diverse cellular functions including cell growth, homeostasis, and stress responses. In a variety of metazoans, cytosolic S1P is transported into the extracellular space where it activates S1P receptors in a concentration-dependent manner. In the free-living nematode , the gene, which encodes a S1P transporter, is activated during Gram-positive or Gram-negative bacterial infection of the intestine.

View Article and Find Full Text PDF

There is a significant need to combat the growing challenge of antibacterial drug resistance. We have previously developed a whole-animal dual-screening platform that first used the nematode , to identify low-toxicity antibacterial hits in a high-throughput format. The hits were then evaluated in the wax moth caterpillar infection model to confirm efficacy and low toxicity at a whole animal level.

View Article and Find Full Text PDF

Resistance or tolerance to traditional antibiotics is a challenging issue in antimicrobial chemotherapy. Moreover, traditional bactericidal antibiotics kill only actively growing bacterial cells, whereas nongrowing metabolically inactive cells are tolerant to and therefore "persist" in the presence of legacy antibiotics. Here, we report that the diarylurea derivative PQ401, previously characterized as an inhibitor of the insulin-like growth factor I receptor, kills both antibiotic-resistant and nongrowing antibiotic-tolerant methicillin-resistant (MRSA) by lipid bilayer disruption.

View Article and Find Full Text PDF

Background: Multicellular animals and bacteria frequently engage in predator-prey and host-pathogen interactions, such as the well-studied relationship between Pseudomonas aeruginosa and the nematode Caenorhabditis elegans. This study investigates the genomic and genetic basis of bacterial-driven variability in P. aeruginosa virulence towards C.

View Article and Find Full Text PDF

Treatment of infections is complicated by the development of antibiotic tolerance, a consequence of the ability of to enter into a nongrowing, dormant state in which the organisms are referred to as persisters. We report that the clinically approved anthelmintic agent bithionol kills methicillin-resistant (MRSA) persister cells, which correlates with its ability to disrupt the integrity of Gram-positive bacterial membranes. Critically, bithionol exhibits significant selectivity for bacterial compared with mammalian cell membranes.

View Article and Find Full Text PDF

My trajectory to becoming a plant biologist was shaped by a complex mix of scientific, political, sociological, and personal factors. I was trained as a microbiologist and molecular biologist in the late 1960s and early 1970s, a time of political upheaval surrounding the Vietnam War. My political activism taught me to be wary of the potential misuses of scientific knowledge and to promote the positive applications of science for the benefit of society.

View Article and Find Full Text PDF

Conventional antibiotics are not effective in treating infections caused by drug-resistant or persistent nongrowing bacteria, creating a dire need for the development of new antibiotics. We report that the small molecule nTZDpa, previously characterized as a nonthiazolidinedione peroxisome proliferator-activated receptor gamma partial agonist, kills both growing and persistent Staphylococcus aureus cells by lipid bilayer disruption. S.

View Article and Find Full Text PDF

High throughput DNA sequencing methodology (next generation sequencing; NGS) has rapidly evolved over the past 15 years and new methods are continually being commercialized. As the technology develops, so do increases in the number of corresponding applications for basic and applied science. The purpose of this review is to provide a compendium of NGS methodologies and associated applications.

View Article and Find Full Text PDF

Pseudomonas aeruginosa is a phenotypically and genotypically diverse and adaptable Gram-negative bacterium ubiquitous in human environments. P. aeruginosa is able to form biofilms, develop antibiotic resistance, produce virulence factors, and rapidly evolve in the course of a chronic infection.

View Article and Find Full Text PDF

A challenge in the treatment of Staphylococcus aureus infections is the high prevalence of methicillin-resistant S. aureus (MRSA) strains and the formation of non-growing, dormant 'persister' subpopulations that exhibit high levels of tolerance to antibiotics and have a role in chronic or recurrent infections. As conventional antibiotics are not effective in the treatment of infections caused by such bacteria, novel antibacterial therapeutics are urgently required.

View Article and Find Full Text PDF

When feeds on , some bacteria cross the intestinal barrier and eventually proliferate in the hemocoel. This process is limited by hemocytes through phagocytosis. requires the quorum-sensing regulator RhlR to elude the cellular immune response of the fly.

View Article and Find Full Text PDF

The innate immune response of the nematode Caenorhabditis elegans has been extensively studied and a variety of Toll-independent immune response pathways have been identified. Surprisingly little, however, is known about how pathogens activate the C. elegans immune response.

View Article and Find Full Text PDF

Plant-associated soil microbes are important mediators of plant defence responses to diverse above-ground pathogen and insect challengers. For example, closely related strains of beneficial rhizosphere Pseudomonas spp. can induce systemic resistance (ISR), systemic susceptibility (ISS) or neither against the bacterial foliar pathogen Pseudomonas syringae pv.

View Article and Find Full Text PDF

Bacterial persisters are a quasidormant subpopulation of cells that are tolerant to antibiotic treatment. The combination of the aminoglycoside tobramycin with fumarate as an antibacterial potentiator utilizes an antipersister strategy that is aimed at reducing recurrent infections by enhancing the killing of persisters. Stationary-phase cultures of were used to generate persister cells.

View Article and Find Full Text PDF

Pathogenic bacteria secrete toxins and degradative enzymes that facilitate their growth by liberating nutrients from the environment. To understand bacterial growth under nutrient-limited conditions, we studied resource allocation between cellular and secreted components by the pathogenic bacterium during growth on a protein substrate that requires extracellular digestion by secreted proteases. We identified a quantitative relationship between the rate of increase of cellular biomass under nutrient-limiting growth conditions and the rate of increase in investment in secreted proteases.

View Article and Find Full Text PDF

is a highly infectious Gram-negative intracellular pathogen that causes tularemia. Because of its potential as a bioterrorism agent, there is a need for new therapeutic agents. We therefore developed a whole-animal - pathosystem for high-throughput screening to identify and characterize potential therapeutic compounds.

View Article and Find Full Text PDF

There are intriguing parallels between plants and animals, with respect to the structures of their innate immune receptors, that suggest universal principles of innate immunity. The cytosolic nucleotide binding site-leucine rich repeat (NBS-LRR) resistance proteins of plants (R-proteins) and the so-called NOD-like receptors of animals (NLRs) share a domain architecture that includes a STAND (signal transduction ATPases with numerous domains) family NTPase followed by a series of LRRs, suggesting inheritance from a common ancestor with that architecture. Focusing on the STAND NTPases of plant R-proteins, animal NLRs, and their homologs that represent the NB-ARC (nucleotide-binding adaptor shared by APAF-1, certain R gene products and CED-4) and NACHT (named for NAIP, CIIA, HET-E, and TEP1) subfamilies of the STAND NTPases, we analyzed the phylogenetic distribution of the NBS-LRR domain architecture, used maximum-likelihood methods to infer a phylogeny of the NTPase domains of R-proteins, and reconstructed the domain structure of the protein containing the common ancestor of the STAND NTPase domain of R-proteins and NLRs.

View Article and Find Full Text PDF