Despite the real-time, nonionizing, and cost-effective nature of ultrasound imaging, there is a dearth of methods to visualize two or more populations of contrast agents simultaneously─a technique known as multiplex imaging. Here, we present a new approach to multiplex ultrasound imaging using perfluorocarbon (PFC) nanodroplets. The nanodroplets, which undergo a liquid-to-gas phase transition in response to an acoustic trigger, act as activatable contrast agents.
View Article and Find Full Text PDFPerfluorocarbon nanodroplets offer an alternative to gaseous microbubbles as contrast agents for ultrasound imaging. They can be acoustically activated to induce a liquid-to-gas phase transition and provide contrast in ultrasound images. In this study, we demonstrate a new strategy to synthesize antibody-conjugated perfluorohexane nanodroplet (PFHnD-Ab) ultrasound contrast agents that target cells overexpressing the epidermal growth factor receptor (EGFR).
View Article and Find Full Text PDFThe sensitivity of fluorescence imaging is limited by the high optical scattering of tissue. One approach to improve sensitivity to small signals is to use a contrast agent with a signal that can be externally modulated. In this work, we present a new phase-changing perfluorocarbon nanodroplet contrast agent loaded with DiR dye.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
December 2021
Superheated perfluorocarbon nanodroplets are emerging ultrasound imaging contrast agents that boast biocompatible components, unique phase-change dynamics, and therapeutic loading capabilities. Upon exposure to a sufficiently high-intensity pulse of acoustic energy, the nanodroplet's perfluorocarbon core undergoes a liquid-to-gas phase change and becomes an echogenic microbubble, providing ultrasound contrast. The controllable activation leads to high-contrast images, while the small size of the nanodroplets promotes longer circulation times and better in vivo stability.
View Article and Find Full Text PDFFluorescence imaging is severely limited by the background and autofluorescence of tissues for in vivo detection of circulating tumor cells (CTCs). Time-gated luminescence (TGL) imaging, in combination with luminescent probes that possess hundreds of microsecond emission lifetimes, can be used to effectively suppress this background, which has predominantly nanosecond lifetimes. This Letter demonstrates the feasibility of TGL imaging using luminescent probes for the in vivo real time imaging and tracking of single CTCs circulating freely in the blood vessels with higher accuracy given by substantially higher signal-to-noise ratio.
View Article and Find Full Text PDFPhotoacoustic imaging is a rapidly developing tool capable of achieving high-resolution images with optical contrast at imaging depths up to a few centimeters. When combined with targeted nanoparticle contrast agents, sensitive detection of molecular signatures is possible. In this chapter, we discuss the achievements and future directions of nanoparticle-augmented photoacoustic imaging.
View Article and Find Full Text PDF