Hypoxic adaptation mediated by HIF transcription factors requires mitochondria, which have been implicated in regulating HIF1α stability in hypoxia by distinct models that involve consuming oxygen or alternatively converting oxygen into the second messenger peroxide. Here, we use a ratiometric, peroxide reporter, HyPer to evaluate the role of peroxide in regulating HIF1α stability. We show that antioxidant enzymes are neither homeostatically induced nor are peroxide levels increased in hypoxia.
View Article and Find Full Text PDFWhen O is plentiful, the mitochondrial electron transport chain uses it as a terminal electron acceptor. However, the mammalian retina thrives in a hypoxic niche in the eye. We find that mitochondria in retinas adapt to their hypoxic environment by reversing the succinate dehydrogenase reaction to use fumarate to accept electrons instead of O.
View Article and Find Full Text PDFMechanisms coordinating pancreatic β cell metabolism with insulin secretion are essential for glucose homeostasis. One key mechanism of β cell nutrient sensing uses the mitochondrial GTP (mtGTP) cycle. In this cycle, mtGTP synthesized by succinyl-CoA synthetase (SCS) is hydrolyzed via mitochondrial PEPCK (PEPCK-M) to make phosphoenolpyruvate, a high-energy metabolite that integrates TCA cycling and anaplerosis with glucose-stimulated insulin secretion (GSIS).
View Article and Find Full Text PDFThe aim of the study was to determine the acute contribution of fuel oxidation in mediating the increase in insulin secretion rate (ISR) in response to fatty acids. Measures of mitochondrial metabolism, as reflected by oxygen consumption rate (OCR) and cytochrome c reduction, calcium signaling, and ISR by rat islets were used to evaluate processes stimulated by acute exposure to palmitic acid (PA). The contribution of mitochondrial oxidation of PA was determined in the presence and absence of a blocker of mitochondrial transport of fatty acids (etomoxir) at different glucose concentrations.
View Article and Find Full Text PDFHere we report multiple lines of evidence for a comprehensive model of energy metabolism in the vertebrate eye. Metabolic flux, locations of key enzymes, and our finding that glucose enters mouse and zebrafish retinas mostly through photoreceptors support a conceptually new model for retinal metabolism. In this model, glucose from the choroidal blood passes through the retinal pigment epithelium to the retina where photoreceptors convert it to lactate.
View Article and Find Full Text PDFObjectives: Microfluidic perfusion systems are used for assessing cell and tissue function while assuring cellular viability. Low perfusate flow rates, desired both for conserving reagents and for extending the number of channels and duration of experiments, conventionally depend on peristaltic pumps to maintain flow yet such pumps are unwieldy and scale poorly for high-throughput applications requiring 16 or more channels. The goal of the study was to develop a scalable multichannel microfluidics system capable of maintaining and assessing kinetic responses of small amounts of tissue to drugs or changes in test conditions.
View Article and Find Full Text PDFFunctional characterization of individual cells within heterogeneous tissue preparations is challenging. Here, we report the development of a versatile imaging method that assesses single cell responses of various endpoints in real time, while identifying the individual cell types. Endpoints that can be measured include (but are not limited to) ionic flux (calcium, sodium, potassium and hydrogen), metabolic responsiveness (NAD(P)H, mitochondrial membrane potential), and signal transduction (HO and cAMP).
View Article and Find Full Text PDFA real-time method to measure intracellular hydrogen peroxide (HO) would be very impactful in characterizing rapid changes that occur in physiologic and pathophysiologic states. Current methods do not provide the sensitivity, specificity and spatiotemporal resolution needed for such experiments on intact cells. We developed the use of HyPer, a genetic indicator for HO that can be expressed in the cytosol (cyto-HyPer) or the mitochondria (mito-HyPer) of live cells.
View Article and Find Full Text PDFProduction of energy in a cell must keep pace with demand. Photoreceptors use ATP to maintain ion gradients in darkness, whereas in light they use it to support phototransduction. Matching production with consumption can be accomplished by coupling production directly to consumption.
View Article and Find Full Text PDFThere is a general need to detect toxic effects of drugs during preclinical screening. We propose that increased sensitivity of xenobiotics toxicity combined with improved in vitro physiological recapitulation will more accurately assess potentially toxic perturbations of cellular biochemistry that are near in vivo pharmacological exposure levels. Importantly, measurement of such cytopathologies avoids activating mechanisms mediating toxicity at suprapharmacologic levels not relevant to in vivo effects.
View Article and Find Full Text PDFThe aim of the study was to assess the relative control of insulin secretion rate (ISR) by calcium influx and signaling from cytochrome c in islets where, as in diabetes, the metabolic pathways are impaired. This was achieved either by culturing isolated islets at low (3 mm) glucose or by fasting rats prior to the isolation of the islets. Culture in low glucose greatly reduced the glucose response of cytochrome c reduction and translocation and ISR, but did not affect the response to the mitochondrial fuel α-ketoisocaproate.
View Article and Find Full Text PDFTransport of pyruvate into mitochondria by the mitochondrial pyruvate carrier is crucial for complete oxidation of glucose and for biosynthesis of amino acids and lipids. Zaprinast is a well known phosphodiesterase inhibitor and lead compound for sildenafil. We found Zaprinast alters the metabolomic profile of mitochondrial intermediates and amino acids in retina and brain.
View Article and Find Full Text PDFIn Gram-negative methylotrophic bacteria, the first step in methylotrophic growth is the oxidation of methanol to formaldehyde in the periplasm by methanol dehydrogenase. In most organisms studied to date, this enzyme consists of the MxaF and MxaI proteins, which make up the large and small subunits of this heterotetrameric enzyme. The Methylobacterium extorquens AM1 genome contains two homologs of MxaF, XoxF1 and XoxF2, which are ∼50% identical to MxaF and ∼90% identical to each other.
View Article and Find Full Text PDF