Techniques and approaches of spinal fusion have considerably evolved since their first description in the early 1900s. The incorporation of pedicle screw constructs into lumbosacral spine surgery is among the most significant advances in the field, offering immediate stability and decreased rates of pseudarthrosis compared to previously described methods. However, early studies describing pedicle screw fixation and numerous studies thereafter have demonstrated clinically significant sequelae of inaccurate surgical fusion hardware placement.
View Article and Find Full Text PDFRationale And Objectives: Fluoroscopically guided lumbar puncture (FGLP) is a commonly performed procedure with increased success rates relative to bedside technique. However, FGLP also exposes both patient and staff to ionizing radiation. The purpose of this study was to determine if the use of a simulation-based FGLP training program using an original, inexpensive lumbar spine phantom could improve operator confidence and efficiency, while also reducing patient dose.
View Article and Find Full Text PDFIntroduction: This report describes the creation process for an inexpensive, durable, lumbar spine phantom for use in fluoroscopically guided lumbar puncture (LP) training.
Methods: The LP phantom prototype was made from a polyvinyl chloride lumbar spine model embedded in a translucent rectangular block of commercially available thermoplastic polymer gel. Radiology residents with limited previous experience performing LP used the phantom for 20 simulated procedures to gain confidence before starting patient procedures.
Study Design: This study compares the accuracy rates of lumbar percutaneous pedicle screw placement (PPSP) using either 2-dimensional (2-D) fluoroscopic guidance or 3-dimensional (3-D) stereotactic navigation in the setting of minimally invasive spine surgery (MISS). This represents the largest single-operator study of its kind and first comprehensive review of 3-D stereotactic navigation in the setting of MISS.
Objective: To examine differences in accuracy of lumbar pedicle screw placement using 2-D fluoroscopic navigation and 3-D stereotaxis in the setting of MISS.
Rationale And Objectives: Concerns over medical radiation exposure have received national press in recent years, and training in the appropriate use of radiation has become an essential component of every radiology residency program. Appropriate training is particularly important in fluoroscopy because it is commonly used by inexperienced radiology residents and has the potential to impart relatively high patient radiation doses. In an effort to minimize the radiation doses received by patients, our institution has recently initiated an online training program in the safe use of fluoroscopy.
View Article and Find Full Text PDF