Homophily is the seemingly ubiquitous tendency for people to connect and interact with other individuals who are similar to them. This is a well-documented principle and is fundamental for how society organizes. Although many social interactions occur in groups, homophily has traditionally been measured using a graph model, which only accounts for pairwise interactions involving two individuals.
View Article and Find Full Text PDFHypergraphs are a natural modeling paradigm for networked systems with multiway interactions. A standard task in network analysis is the identification of closely related or densely interconnected nodes. We propose a probabilistic generative model of clustered hypergraphs with heterogeneous node degrees and edge sizes.
View Article and Find Full Text PDFNetworks provide a powerful formalism for modeling complex systems by using a model of pairwise interactions. But much of the structure within these systems involves interactions that take place among more than two nodes at once-for example, communication within a group rather than person to person, collaboration among a team rather than a pair of coauthors, or biological interaction between a set of molecules rather than just two. Such higher-order interactions are ubiquitous, but their empirical study has received limited attention, and little is known about possible organizational principles of such structures.
View Article and Find Full Text PDFA fundamental property of complex networks is the tendency for edges to cluster. The extent of the clustering is typically quantified by the clustering coefficient, which is the probability that a length-2 path is closed, i.e.
View Article and Find Full Text PDFLocal graph clustering methods aim to find a cluster of nodes by exploring a small region of the graph. These methods are attractive because they enable targeted clustering around a given seed node and are faster than traditional global graph clustering methods because their runtime does not depend on the size of the input graph. However, current local graph partitioning methods are not designed to account for the higher-order structures crucial to the network, nor can they effectively handle directed networks.
View Article and Find Full Text PDFNetworks are a fundamental tool for understanding and modeling complex systems in physics, biology, neuroscience, engineering, and social science. Many networks are known to exhibit rich, lower-order connectivity patterns that can be captured at the level of individual nodes and edges. However, higher-order organization of complex networks--at the level of small network subgraphs--remains largely unknown.
View Article and Find Full Text PDFProc SIAM Int Conf Data Min
January 2015
Spectral graph theory-based methods represent an important class of tools for studying the structure of networks. Spectral methods are based on a first-order Markov chain derived from a random walk on the graph and thus they cannot take advantage of important higher-order network substructures such as triangles, cycles, and feed-forward loops. Here we propose a (TSC) algorithm that allows for modeling higher-order network structures in a graph partitioning framework.
View Article and Find Full Text PDF