Publications by authors named "Austin Peterson"

Reanalysis of an asymmetric poly(ethylene--propylene)--polydimethylsiloxane (PEP-PDMS) diblock copolymer first investigated in 1999 has revealed a rich phase behavior including a dodecagonal quasicrystal (DDQC), a Frank-Kasper σ phase, and a body-centered cubic (BCC) packing at high temperature adjacent to the disordered state. On subjecting the sample to large amplitude oscillatory shear well below the σ-BCC order-order transition temperature (), small-angle X-ray scattering evidenced the emergence of a twinned BCC phase that, on heating, underwent a phase transition to an unusually anisotropic DDQC state. Surprisingly, we observe no evidence of this apparent epitaxy on heating or cooling through the equilibrium σ-BCC transition.

View Article and Find Full Text PDF

Interest in O2-dependent aliphatic carbon-carbon (C-C) bond cleavage reactions of first row divalent metal diketonate complexes stems from the desire to further understand the reaction pathways of enzymes such as DKE1 and to extract information to develop applications in organic synthesis. A recent report of O2-dependent aliphatic C-C bond cleavage at ambient temperature in Ni(ii) diketonate complexes supported by a tridentate nitrogen donor ligand [(MBBP)Ni(PhC(O)CHC(O)Ph)]Cl (7-Cl; MBBP = 2,6-bis(1-methylbenzimidazol-2-yl)pyridine) in the presence of NEt3 spurred our interest in further examining the chemistry of such complexes. A series of new TERPY-ligated Ni(ii) diketonate complexes of the general formula [(TERPY)Ni(R2-1,3-diketonate)]ClO4 (1: R = CH3; 2: R = C(CH3)3; 3: R = Ph) was prepared under air and characterized using single crystal X-ray crystallography, elemental analysis, 1H NMR, ESI-MS, FTIR, and UV-vis.

View Article and Find Full Text PDF

A renewed focus on the phase behavior of nominally single-component, compositionally asymmetric diblock copolymers has revealed a host of previously unanticipated Frank-Kasper (FK) and quasicrystalline phases. However, these periodic and aperiodic particle packings have thus far only been reported in low molecular weight, highly conformationally asymmetric diblock copolymers, leaving researchers with a relatively small library of polymers in which these phases can be studied. In this work, we report on a simple approach to access these morphologies: blending two diblock copolymers with the same corona block length and varied core block lengths.

View Article and Find Full Text PDF