Climate change will increase the frequency and intensity of extreme climatic events (e.g., storms) that result in repeated pulses of hyposalinity in nearshore ecosystems.
View Article and Find Full Text PDFClimate change will increase the frequency and intensity of low-salinity (hyposalinity) events in coastal marine habitats. Sea urchins are dominant herbivores in these habitats and are generally intolerant of salinity fluctuations. Their adhesive tube feet are essential for survival, effecting secure attachment and locomotion in high wave energy habitats, yet little is known about how hyposalinity impacts their function.
View Article and Find Full Text PDFClaws are a common anatomical feature among limbed amniotes and contribute to a variety of functions including prey capture, locomotion, and attachment. Previous studies of both avian and non-avian reptiles have found correlations between habitat use and claw morphology, suggesting that variation in claw shape permits effective functioning in different microhabitats. How, or if, claw morphology influences attachment performance, particularly in isolation from the rest of the digit, has received little attention.
View Article and Find Full Text PDFJ R Soc Interface
November 2022
Microscopic papillae on polar bear paw pads are considered adaptations for increased friction on ice/snow, yet this assertion is based on a single study of one species. The lack of comparative data from species that exploit different habitats renders the ecomorphological associations of papillae unclear. Here, we quantify the surface roughness of the paw pads of four species of bear over five orders of magnitude by calculating their surface roughness power spectral density.
View Article and Find Full Text PDFThe roughness and wettability of surfaces exploited by free-ranging geckos can be highly variable and attachment to these substrates is context dependent (e.g., presence or absence of surface water).
View Article and Find Full Text PDFResearch on gecko-based adhesion has become a truly interdisciplinary endeavour, encompassing many disciplines within the natural and physical sciences. Gecko adhesion occurs by the induction of van der Waals intermolecular (and possibly other) forces between substrata and integumentary filaments (setae) terminating in at least one spatulate tip. Gecko setae have increasingly been idealized as structures with uniform dimensions and a particular branching pattern.
View Article and Find Full Text PDFGecko substrate use is likely influenced by adhesive performance, yet few studies have demonstrated this empirically. Herein, we examined the substrate use, adhesive performance and vertical clinging behaviour of in captivity to investigate whether adhesive performance influences patterns of substrate use. We found that geckos were observed significantly more often on the substrate (glass) that elicited maximal adhesive performance relative to its availability within our experimental enclosures, indicating that geckos preferentially use substrates on which their adhesive performance is maximal.
View Article and Find Full Text PDFThe functional morphology of squamate fibrillar adhesive systems has been extensively investigated and has indirectly and directly influenced the design of synthetic counterparts. Not surprisingly, the structure and geometry of exemplar fibrils (setae) have been the subject of the bulk of the attention in such research, although variation in setal morphology along the length of subdigital adhesive pads has been implicated to be important in the effective functioning of these systems. Adhesive setal field configuration has been described for several geckos, but that of the convergent Anolis lizards, comprised of morphologically simpler fibrils, remains largely unexplored.
View Article and Find Full Text PDFBackground: Invasive species are of substantial concern because they may threaten ecosystem stability and biodiversity worldwide. Not surprisingly, studies examining the drivers of biological invasion have increased in number over the past few decades in an effort to curtail invasive species success by way of informing management decisions. The common house gecko, , has successfully invaded the Pacific islands where it appears to thrive in and dominate non-natural habitats offering high food availability (i.
View Article and Find Full Text PDFResponse of orange-finned anemonefish Amphiprion chrysopterus and three-spot damselfish Dascyllus trimaculatus to red laser-pointer light was studied in Mo'orea, French Polynesia. Four magnificent anemones Heteractis magnifica and their resident fish were observed for typical behaviours (biting, chasing, hiding, posing, lunging and retreating) with and without exposure to laser-pointer light. Lunging behaviour increased significantly for both fish species upon exposure to laser-pointer light; none of the other behaviours changed significantly.
View Article and Find Full Text PDFJ Exp Zool A Ecol Integr Physiol
February 2020
The remarkable properties of the gecko adhesive system have been intensively studied. Although many gecko-inspired synthetic adhesives have been designed and fabricated, few manage to capture the multifunctionality of the natural system. Analogous to previously documented self-cleaning, recent work demonstrated that gecko toe pads dry when geckos take steps on dry substrates (i.
View Article and Find Full Text PDFRemoras are a family of fishes that can attach to other swimming organisms via an adhesive disc evolved from dorsal fin elements. However, the factors driving the evolution of remora disc morphology are poorly understood. It is not possible to link selective pressure for attachment to a specific host surface because all known hosts evolved before remoras themselves.
View Article and Find Full Text PDFIt has been nearly 20 years since Autumn and colleagues established the central role of van der Waals intermolecular forces in how geckos stick. Much has been discovered about the structure and function of fibrillar adhesives in geckos and other taxa, and substantial success has been achieved in translating natural models into bioinspired synthetic adhesives. Nevertheless, synthetics still cannot match the multidimensional performance observed in the natural gecko system that is simultaneously robust to dirt and water, resilient over thousands of cycles, and purportedly competent on surfaces that are rough at drastically different length scales.
View Article and Find Full Text PDFThe remarkable ability of geckos to adhere to a wide-variety of surfaces has served as an inspiration for hundreds of studies spanning the disciplines of biomechanics, functional morphology, ecology, evolution, materials science, chemistry, and physics. The multifunctional properties (e.g.
View Article and Find Full Text PDF