Microglia play a critical role in maintaining central nervous system (CNS) homeostasis and display remarkable plasticity in their response to inflammatory stimuli. However, the specific signaling profiles that microglia adopt during such challenges remain incompletely understood. Traditional transcriptomic approaches provide valuable insights, but fail to capture dynamic post-translational changes.
View Article and Find Full Text PDFGlucagon-like peptide-1 receptor agonists (GLP1RAs) effectively reduce body weight and improve metabolic outcomes, yet established peptide-based therapies require injections and complex manufacturing. Small-molecule GLP1RAs promise oral bioavailability and scalable manufacturing, but their selective binding to human versus rodent receptors has limited mechanistic studies. The neural circuits through which these emerging therapeutics modulate feeding behavior remain undefined, particularly in comparison to established peptide-based GLP1RAs.
View Article and Find Full Text PDFDevelopment of the mammalian brain requires precise molecular changes across diverse cell lineages. While single-cell RNA abundances in the developing brain have been characterized by single-cell RNA sequencing (scRNA-seq), single-cell protein abundances have not been characterized. To address this gap, we performed mass cytometry on the whole brain at embryonic day (E)11.
View Article and Find Full Text PDFMicroglia play a critical role in maintaining central nervous system (CNS) homeostasis and display remarkable plasticity in their response to inflammatory stimuli. However, the specific signaling profiles that microglia adopt during such challenges remain incompletely understood. Traditional transcriptomic approaches provide valuable insights, but fail to capture dynamic post-translational changes.
View Article and Find Full Text PDFDepression is a prevalent psychological condition with limited treatment options. While its etiology is multifactorial, both chronic stress and changes in microbiome composition are associated with disease pathology. Stress is known to induce microbiome dysbiosis, defined here as a change in microbial composition associated with a pathological condition.
View Article and Find Full Text PDFDevelopment of neuronal and glial populations in the dorsal root ganglia (DRG) is required for detection of touch, body position, temperature, and noxious stimuli. While female-male differences in somatosensory perception have been previously reported, no study has examined global sex differences in the abundance of DRG cell types, and the developmental origin of these differences has not been characterized. To investigate whether sex-specific differences in neuronal and glial cell types arise in the DRG during development, we performed single-cell mass cytometry analysis on sex-separated DRGs from 4 separate litter replicates of postnatal day 0 (P0) C57/BL6 mouse pups.
View Article and Find Full Text PDFProper wiring of the peripheral nervous system relies on neurotrophic signaling via nerve growth factor (NGF). NGF secreted by target organs (i.e.
View Article and Find Full Text PDFPrecisely controlled development of the somatosensory system is essential for detecting pain, itch, temperature, mechanical touch and body position. To investigate the protein-level changes that occur during somatosensory development, we performed single-cell mass cytometry on dorsal root ganglia from C57/BL6 mice of both sexes, with litter replicates collected daily from embryonic day 11.5 to postnatal day 4.
View Article and Find Full Text PDFThe development of the peripheral nervous system relies on long-distance signaling from target organs back to the soma. In sympathetic neurons, this long-distance signaling is mediated by target derived Nerve Growth Factor (NGF) interacting with its axonal receptor, TrkA. This ligand receptor complex internalizes into what is commonly referred to as the signaling endosome which is transported retrogradely to the soma and dendrites to mediate survival signaling and synapse formation, respectively.
View Article and Find Full Text PDFIn neurons, correct targeting of receptors to the axon is critical for cell survival and circuit formation. In this issue of Developmental Cell, Yamashita et al. (2017) report that the ER-resident phosphatase PTP1B is required to prime TrkA for axonal transport.
View Article and Find Full Text PDFPostganglionic sympathetic neurons detect vascular derived neurotrophin 3 (NT3) via the axonally expressed receptor tyrosine kinase, TrkA, to promote chemo-attraction along intermediate targets. Once axons arrive to their final target, a structurally related neurotrophic factor, nerve growth factor (NGF), also acts through TrkA to promote final target innervation. Does TrkA signal differently at these different locales? We previously found that Coronin-1 is upregulated in sympathetic neurons upon exposure to NGF, thereby endowing the NGF-TrkA complex with new signaling capabilities (i.
View Article and Find Full Text PDFA competitive balance between constructive and destructive developmental cues governs both the form and function of the vertebrate nervous system. In this issue, Foldi et al. (2017.
View Article and Find Full Text PDFGrowth of a properly complex dendrite arbor is a key step in neuronal differentiation and a prerequisite for neural circuit formation. Diverse cell surface molecules, such as the clustered protocadherins (Pcdhs), have long been proposed to regulate circuit formation through specific cell-cell interactions. Here, using transgenic and conditional knockout mice to manipulate γ-Pcdh repertoire in the cerebral cortex, we show that the complexity of a neuron's dendritic arbor is determined by homophilic interactions with other cells.
View Article and Find Full Text PDFThe γ-protocadherins (γ-Pcdhs) are a family of 22 adhesion molecules with multiple critical developmental functions, including the proper formation of dendritic arbors by forebrain neurons. The γ-Pcdhs bind to and inhibit focal adhesion kinase (FAK) via a constant C-terminal cytoplasmic domain shared by all 22 proteins. In cortical neurons lacking the γ-Pcdhs, aberrantly high activity of FAK and of PKC disrupts dendrite arborization.
View Article and Find Full Text PDFThe proper formation of dendritic arbors is a critical step in neural circuit formation, and as such defects in arborization are associated with a variety of neurodevelopmental disorders. Among the best gene candidates are those encoding cell adhesion molecules, including members of the diverse cadherin superfamily characterized by distinctive, repeated adhesive domains in their extracellular regions. Protocadherins (Pcdhs) make up the largest group within this superfamily, encompassing over 80 genes, including the ∼60 genes of the α-, β-, and γ-Pcdh gene clusters and the non-clustered δ-Pcdh genes.
View Article and Find Full Text PDF