Nuclear speckles are dynamic nuclear bodies characterized by high concentrations of factors involved in RNA production. Although the contents of speckles suggest multifaceted roles in gene regulation, their biological functions are unclear. Here we investigate speckle variation in human cancer, finding two main signatures.
View Article and Find Full Text PDFNuclear speckles are membrane-less bodies within the cell nucleus enriched in RNA biogenesis, processing, and export factors. In this study we investigated speckle phenotype variation in human cancer, finding a reproducible speckle signature, based on RNA expression of speckle-resident proteins, across >20 cancer types. Of these, clear cell renal cell carcinoma (ccRCC) exhibited a clear correlation between the presence of this speckle expression signature, imaging-based speckle phenotype, and clinical outcomes.
View Article and Find Full Text PDFIn type 2 diabetes, β-cells endure various forms of cellular stress, including oxidative stress and endoplasmic reticulum stress, secondary to increased demand for insulin production and extracellular perturbations, including hyperglycemia. Chronic exposure to stress causes impaired insulin secretion, apoptosis, and loss of cell identity, and a combination of these processes leads to β-cell failure and severe hyperglycemia. Therefore, a better understanding of the molecular mechanisms underlying stress responses in β-cells promises to reveal new therapeutic opportunities for type 2 diabetes.
View Article and Find Full Text PDFObjective: Pancreatic β cell failure plays a central role in the development of type 2 diabetes (T2D). While the transcription factors shaping the β cell gene expression program have received much attention, the post-transcriptional controls that are activated in β cells during stress are largely unknown. We recently identified JUND as a pro-oxidant transcription factor that is post-transcriptionally upregulated in β cells during metabolic stress.
View Article and Find Full Text PDFObjective: In type 2 diabetes (T2D), oxidative stress contributes to the dysfunction and loss of pancreatic β cells. A highly conserved feature of the cellular response to stress is the regulation of mRNA translation; however, the genes regulated at the level of translation are often overlooked due to the convenience of RNA sequencing technologies. Our goal is to investigate translational regulation in β cells as a means to uncover novel factors and pathways pertinent to cellular adaptation and survival during T2D-associated conditions.
View Article and Find Full Text PDFObjective: Loss of insulin secretion due to failure or death of the insulin secreting β cells is the central cause of diabetes. The cellular response to stress (endoplasmic reticulum (ER), oxidative, inflammatory) is essential to sustain normal β cell function and survival. Pancreatic and duodenal homeobox 1 (PDX1), Activating transcription factor 4 (ATF4), and Activating transcription factor 5 (ATF5) are transcription factors implicated in β cell survival and susceptibility to stress.
View Article and Find Full Text PDFThe stress response and cell survival are necessary for normal pancreatic β-cell function, glucose homeostasis, and prevention of diabetes. The homeodomain transcription factor and human diabetes gene pancreas/duodenum homeobox protein 1 (Pdx1) regulates β-cell survival and endoplasmic reticulum stress susceptibility, in part through direct regulation of activating transcription factor 4 (Atf4). Here we show that Atf5, a close but less-studied relative of Atf4, is also a target of Pdx1 and is critical for β-cell survival under stress conditions.
View Article and Find Full Text PDFIn eukaryotic cells, gene expression is mediated by enhancer activation of RNA polymerase at distant promoters. Recently, distinctions between enhancers and promoters have been blurred by the discovery that enhancers are associated with RNA polymerase and are sites of RNA synthesis. Here, we present an analysis of the insulin-like growth factor 2/H19 muscle enhancer.
View Article and Find Full Text PDFDevelopmentally regulated transcription often depends on physical interactions between distal enhancers and their cognate promoters. Recent genomic analyses suggest that promoter-promoter interactions might play a similarly critical role in organizing the genome and establishing cell-type-specific gene expression. The Igf2/H19 locus has been a valuable model for clarifying the role of long-range interactions between cis-regulatory elements.
View Article and Find Full Text PDF