Publications by authors named "Austin Ferrenti"

Transition-metal dichalcogenides (TMDs) have long been attractive to researchers for their diverse properties and high degree of tunability. Most recently, interest in magnetically intercalated TMDs has resurged due to their potential applications in spintronic devices. While certain compositions featuring the absence of inversion symmetry such as FeNbS and CrNbS have garnered the most attention, the diverse compositional space afforded through the host matrix composition as well as intercalant identity and concentration is large and remains relatively underexplored.

View Article and Find Full Text PDF

The diversification of magnetic two-dimensional (2D) materials holds the key to the further development of advanced technologies, such as spintronic devices and efficient data storage. However, the search for intrinsic magnetism down to the 2D limit is severely limited by the ability to reliably exfoliate large, air-stable nanosheets. Chemical exfoliation, a relatively underutilized method for delamination, offers many advantages, including a high degree of adaptability and higher yields of uniformly exfoliated materials.

View Article and Find Full Text PDF

The ultrafast optical response of nodal-line semimetals ZrSiS and ZrSiSe was studied in the near-infrared using transient reflectivity. The materials exhibit similar responses, characterized by two features, well-resolved in time and energy; the first decays after hundreds of femtoseconds, and the second lasts for nanoseconds. Using Drude-Lorentz fits of the materials' equilibrium reflectance, we show that these are well-represented by a sudden change of the electronic properties (increase of screening or reduction of the plasma frequency) followed by an increase of the Drude scattering rate.

View Article and Find Full Text PDF

The development of novel, intrinsic two-dimensional (2D) antiferromagnets presents the opportunity to vastly improve the efficiency of spintronic devices and sensors. The strong intrinsic antiferromagnetism and van der Waals layered structure exhibited by the bulk transition-metal oxychlorides provide a convenient system for the synthesis of such materials. In this work, we report the exfoliation of bulk FeOCl into and subsequent characterization of intrinsically antiferromagnetic thin-layer FeOCl nanosheets.

View Article and Find Full Text PDF