The synthesis of nanostructured surfaces via block copolymer (BCP) self-assembly enables a precise control of the surface feature shape within a range of dimensions of the order of tens of nanometers. This work studies how to exploit this ability to control the wetting hysteresis and liquid adhesion forces as the substrate undergoes chemical aging and changes in its intrinsic wettability. Via BCP self-assembly we fabricate nanostructured surfaces on silicon substrates with a hexagonal array of regular conical pillars having a fixed period (52 nm) and two different heights (60 and 200 nm), which results in substantially different lateral and top surface areas of the nanostructure.
View Article and Find Full Text PDF