Publications by authors named "Austin Che"

This study explores the liquid crystalline properties of novel amphiphilic β-cyclodextrin derivatives functionalized with seven oligoethylene glycol chains at the primary face, terminated with either an O-methyl or an O-cyanoethyl group, and fourteen hydrophobic aliphatic chains (elaidic or oleic acids) at the secondary face. These derivatives were designed to study the impact of chain conformation and terminal group polarity on their mesomorphic behavior. Thermal, microscopic, and X-ray diffraction studies revealed that the elaidic derivatives form columnar hexagonal mesophases, with the O-cyanoethyl derivative undergoing a slow, temperature-dependent transition to a bicontinuous cubic phase.

View Article and Find Full Text PDF

Amphiphilic supramolecular materials based on biodegradable cyclodextrins (CDs) have been known to self-assemble into different types of thermotropic liquid crystals, including smectic and hexagonal columnar mesophases. Previous studies on amphiphilic CDs bearing 14 aliphatic chains at the secondary face and 7 oligoethylene glycol (OEG) chains at the primary face showed that the stability of the mesophase can be rationally tuned through implementation of terminal functional groups to the OEG chains. Here, we report the syntheses of first examples of crown ether-functionalized amphiphilic cyclodextrins that unexpectedly form thermotropic bicontinuous cubic phases.

View Article and Find Full Text PDF

In this study, we report a novel per-6-substituted β-cyclodextrin () featuring seven phosphoramidate moieties as an innovative host for inclusion. This structurally well-defined host has remarkable water solubility and was isolated in pure form. Analytical techniques such as NMR and ITC were used to probe the molecular interactions with different drug molecules.

View Article and Find Full Text PDF

Controlling RNA splicing opens up possibilities for the synthetic biologist. The Tetrahymena ribozyme is a model group I self-splicing ribozyme that has been shown to be useful in synthetic circuits. To create additional splicing ribozymes that can function in synthetic circuits, we generated synthetic ribozyme variants by rationally mutating the Tetrahymena ribozyme.

View Article and Find Full Text PDF

Background: The development of collections of quantitatively characterized standard biological parts should facilitate the engineering of increasingly complex and novel biological systems. The existing enzymatic and fluorescent reporters that are used to characterize biological part functions exhibit strengths and limitations. Combining both enzymatic and fluorescence activities within a single reporter protein would provide a useful tool for biological part characterization.

View Article and Find Full Text PDF