Background: Clinical applications of conventional functional electrical stimulation (FES) administered via a single electrode are limited by rapid onset neuromuscular fatigue. "Sequential" (SEQ) stimulation, involving the rotation of pulses between multiple active electrodes, has been shown to reduce fatigue compared to conventional FES. However, there has been limited adoption of SEQ in research and clinical settings.
View Article and Find Full Text PDFTranscutaneous neuromuscular electrical stimulation (NMES) can be used to activate the quadriceps femoris muscle to produce knee extension torque via seven distinct motor points, defined as the most sensitive locations on the muscle belly to electrical stimuli. However, it remains unclear how much individual motor points of the quadriceps femoris muscle contribute to the knee joint torque. Here we systematically investigated the contribution of each motor point of the quadriceps femoris muscle to the knee joint torque produced by paired electrical stimuli.
View Article and Find Full Text PDFBackground: Umbilical cord blood has become an important source of hematopoietic stem and progenitor cells for therapeutic applications. However, cord blood banking (CBB) grapples with issues related to economic viability, partially due to high discard rates of cord blood units (CBUs) that lack sufficient total nucleated cells for storage or therapeutic use. Currently, there are no methods available to assess the likelihood of CBUs meeting storage criteria noninvasively at the collection site, which would improve CBB efficiency and economic viability.
View Article and Find Full Text PDFIEEE Trans Neural Syst Rehabil Eng
August 2019
Neuromuscular electrical stimulation is conventionally applied through a single pair of electrodes over the muscle belly, denominated single electrode stimulation (SES). SES is limited by discomfort and incomplete motor-unit recruitment, restricting electrically-evoked torque and promoting premature fatigue-induced torque-decline. Sequential stimulation involving rotation of pulses between multiple pairs of electrodes has been proposed as an alternative, denominated spatially distributed sequential stimulation (SDSS).
View Article and Find Full Text PDFContext: Firing rates of single cortical neurons can be volitionally modulated through biofeedback (i.e. operant conditioning), and this information can be transformed to control external devices (i.
View Article and Find Full Text PDFBackground: The benefits of neuromuscular electrical stimulation (NMES) for rehabilitation depend on the capacity to generate functionally relevant torque with minimal fatigability and discomfort. Traditionally, NMES is delivered either over a muscle belly (mNMES) or a nerve trunk (nNMES). Recently, a technique that minimizes contraction fatigability by alternating pulses between the mNMES and nNMES sites, termed "interleaved" NMES (iNMES), was developed.
View Article and Find Full Text PDFContext: Endocrine-metabolic disease (EMD) risk following spinal cord injury (SCI) is associated with significant multi-morbidity (i.e. fracture, diabetes, heart disease), mortality, and economic burden.
View Article and Find Full Text PDFIntroduction: Neuromuscular electrical stimulation (NMES) over a muscle belly (mNMES) recruits superficial motor units (MUs) preferentially, whereas NMES over a nerve trunk (nNMES) recruits MUs evenly throughout the muscle. We performed tests to determine whether "interleaving" pulses between the mNMES and nNMES sites (iNMES) reduces the fatigability of contractions for people experiencing paralysis because of chronic spinal cord injury.
Methods: Plantar flexion torque and soleus electromyography (M-waves) were recorded from 8 participants.
Introduction: Transcutaneous neuromuscular electrical stimulation (NMES) can generate muscle contractions for rehabilitation and exercise. However, NMES-evoked contractions are limited by fatigue when they are delivered "conventionally" (CONV) using a single active electrode. Researchers have developed "sequential" (SEQ) stimulation, involving rotation of pulses between multiple "aggregated" (AGGR-SEQ) or "distributed" (DISTR-SEQ) active electrodes, to reduce fatigue (torque-decline) by reducing motor unit discharge rates.
View Article and Find Full Text PDFIntroduction: In this study, we quantified the "overlap" between motor units recruited by single pulses of neuromuscular electrical stimulation (NMES) delivered over the tibialis anterior muscle (mNMES) and the common peroneal nerve (nNMES). We then quantified the torque produced when pulses were alternated between the mNMES and nNMES sites at 40 Hz ("interleaved" NMES; iNMES).
Methods: Overlap was assessed by comparing torque produced by twitches evoked by mNMES, nNMES, and both delivered together, over a range of stimulus intensities.
Introduction: Neuromuscular electrical stimulation (NMES) can be delivered over a muscle belly (mNMES) or nerve trunk (nNMES). Both methods generate contractions that fatigue rapidly due, in part, to non-physiologically high motor unit (MU) discharge frequencies. In this study we introduce interleaved NMES (iNMES), whereby stimulus pulses are alternated between mNMES and nNMES.
View Article and Find Full Text PDFIntroduction: Neuromuscular electrical stimulation (NMES) over a muscle belly (mNMES) generates contractions predominantly through M-waves, while NMES over a nerve trunk (nNMES) can generate contractions through H-reflexes in people who are neurologically intact. We tested whether the differences between mNMES and nNMES are present in people with chronic motor-complete spinal cord injury and, if so, whether they influence contraction fatigue.
Methods: Plantar-flexion torque and soleus electromyography were recorded from 8 participants.
Objective: To compare the spatial distribution of motor units recruited in tibialis anterior (TA) when electrical stimulation is applied over the TA muscle belly versus the common peroneal nerve trunk.
Methods: Electromyography (EMG) was recorded from the surface and from fine wires in superficial and deep regions of TA. Separate M-wave recruitment curves were constructed for muscle belly and nerve trunk stimulation.
Recruitment and repetitive firing of spinal motoneurons depend on the activation of persistent inward calcium and sodium currents (PICs) that are in turn facilitated by serotonin and norepinephrine that arise primarily from the brain stem. Considering that in rats motoneuron PICs are greatly facilitated by increasing the presynaptic release of norepinephrine with amphetamine, we sought similar evidence for the modulation of PICs in human motoneurons. Pairs of motor units were recorded during a gradually increasing and then decreasing voluntary contraction.
View Article and Find Full Text PDF