Background And Objective: Erbium:yttrium-aluminum-garnet (Er:YAG) laser ablation can effectively resect water-bearing tissues. Application of Er:YAG resection in neurosurgery is complicated by unpredictable bleeding in surgical field. Recently, an integrated theranostic system combining a dual-wavelength laser surgery system using a thulium (Tm) fiber-laser for coagulation and Er:YAG for resection, combined with optical coherence tomography (OCT) guidance was demonstrated for the in vivo resection of tumor tissue.
View Article and Find Full Text PDFPhotocoagulation of blood vessels offers unambiguous advantages to current radiofrequency approaches considering the high specificity of blood absorption at available laser wavelengths (e.g., 532 nm and 1.
View Article and Find Full Text PDFIntensive Care Med Exp
October 2021
Background: The COVID-19 pandemic has caused a global mechanical ventilator shortage for treatment of severe acute respiratory failure. Development of novel breathing devices has been proposed as a low cost, rapid solution when full-featured ventilators are unavailable. Here we report the design, bench testing and preclinical results for an 'Automated Bag Breathing Unit' (ABBU).
View Article and Find Full Text PDFBackground And Objectives: Despite rapid advances and discoveries in medical imaging, monitoring therapeutic efficacy for malignant gliomas and monitoring tumor vasculature remains problematic. The purpose of this study is to utilize optical coherence angiography for vasculature characterization inside and surrounding brain tumors in a murine xenograft brain tumor model. Features included in our analysis include fractional blood volume, vessel tortuosity, diameter, orientation, and directionality.
View Article and Find Full Text PDFHigher precision surgical devices are needed for tumor resections near critical brain structures. The goal of this study is to demonstrate feasibility of a system capable of precise and bloodless tumor ablation. An image-guided laser surgical system is presented for excision of brain tumors in a murine xenograft model.
View Article and Find Full Text PDFSelective laser sintering (SLS) is an efficient process in additive manufacturing that enables rapid part production from computer-based designs. However, SLS is limited by its notable lack of in-situ process monitoring when compared to other manufacturing processes. We report the incorporation of optical coherence tomography into an SLS system in detail and demonstrate access to surface and sub-surface features.
View Article and Find Full Text PDFBackground And Objective: Surgical oncology can benefit from specialized tools that enhance imaging and enable precise cutting and removal of tissue without damage to adjacent structures. The combination of high-resolution, fast optical coherence tomography (OCT) co-aligned with a nanosecond pulsed thulium (Tm) laser offers advantages over conventional surgical laser systems. Tm lasers provide superior beam quality, high volumetric tissue removal rates with minimal residual thermal footprint in tissue, enabling a reduction in unwanted damage to delicate adjacent sub-surface structures such as nerves or micro-vessels.
View Article and Find Full Text PDFAim: To demonstrate the design, fabrication and testing of conformable conducting biomaterials that encourage cell alignment.
Materials & Methods: Thin conducting composite biomaterials based on multilayer films of poly(3.4-ethylenedioxythiophene) derivatives, chitosan and gelatin were prepared in a layer-by-layer fashion.
A swept-source dual-wavelength photothermal (DWP) optical coherence tomography (OCT) system is demonstrated for quantitative imaging of microvasculature oxygen saturation. DWP-OCT is capable of recording three-dimensional images of tissue and depth-resolved phase variation in response to photothermal excitation. A 1,064-nm OCT probe and 770-nm and 800-nm photothermal excitation beams are combined in a single-mode optical fiber to measure microvasculature hemoglobin oxygen saturation (SO(2)) levels in phantom blood vessels with a range of blood flow speeds (0 to 17 mm/s).
View Article and Find Full Text PDFMicrovasculature hemoglobin oxygen saturation (SaO2) is important in the progression of various pathologies. Non-invasive depth-resolved measurement of SaO2 levels in tissue microvasculature has the potential to provide early biomarkers and a better understanding of the pathophysiological processes allowing improved diagnostics and prediction of disease progression. We report proof-of-concept in vivo depth-resolved measurement of SaO(2) levels in selected 30 µm diameter arterioles in the murine brain using Dual-Wavelength Photothermal (DWP) Optical Coherence Tomography (OCT) with 800 nm and 770 nm photothermal excitation wavelengths.
View Article and Find Full Text PDFA Swept Source Polarization-Sensitive Optical Coherence Tomography (SS-PS-OCT) instrument has been designed, constructed, and verified to provide high sensitivity depth-resolved birefringence and phase retardation measurements of the retinal nerve fiber layer. The swept-source laser had a center wavelength of 1059 nm, a full-width-half-max spectral bandwidth of 58 nm and an A-line scan rate of 34 KHz. Power incident on the cornea was 440 µW and measured axial resolution was 17 µm in air.
View Article and Find Full Text PDFNon-invasive depth-resolved measurement of hemoglobin oxygen saturation (SaO(2)) levels in discrete blood vessels may have implications for diagnosis and treatment of various pathologies. We introduce a novel Dual-Wavelength Photothermal (DWP) Optical Coherence Tomography (OCT) for non-invasive depth-resolved measurement of SaO(2) levels in a blood vessel phantom. DWP OCT SaO(2) is linearly correlated with blood-gas SaO(2) measurements.
View Article and Find Full Text PDF