The ability to associate temporally segregated information and assign positive or negative valence to environmental cues is paramount for survival. Studies have shown that different projections from the basolateral amygdala (BLA) are potentiated following reward or punishment learning. However, we do not yet understand how valence-specific information is routed to the BLA neurons with the appropriate downstream projections, nor do we understand how to reconcile the sub-second timescales of synaptic plasticity with the longer timescales separating the predictive cues from their outcomes.
View Article and Find Full Text PDFAn essential component in animal behavior is the ability to process emotion and dissociate among positive and negative valence in response to a rewarding or aversive stimulus. The medial prefrontal cortex (mPFC)-responsible for higher order executive functions that include cognition, learning, and working memory; and is also involved in sociability-plays a major role in emotional processing and control. Although the amygdala is widely regarded as the "emotional hub," the mPFC encodes for context-specific salience and elicits top-down control over limbic circuitry.
View Article and Find Full Text PDFNeuropharmacology
November 2020
Postsynaptic Density Protein-95 (PSD-95) is a major scaffolding protein in the excitatory synapses in the brain and a critical regulator of synaptic maturation for NMDA and AMPA receptors. PSD-95 deficiency has been linked to cognitive and learning deficits implicated in neurodevelopmental disorders such as autism and schizophrenia. Previous studies have shown that PSD-95 deficiency causes a significant reduction in the excitatory response in the hippocampus.
View Article and Find Full Text PDFPostsynaptic density protein-95 (PSD-95) is a major regulator in the maturation of excitatory synapses by interacting and trafficking N-methyl-D-aspartic acid receptors (NMDAR) and α-amino-3-hydroxy-5-methyl-4-isox-azoleproprionic acid receptors (AMPAR) to the postsynaptic membrane. PSD-95 disruption has recently been associated with neuropsychiatric disorders such as schizophrenia and autism. However, the effects of PSD-95 deficiency on the prefrontal cortex (PFC)-associated functions, including cognition, working memory, and sociability, has yet to be investigated.
View Article and Find Full Text PDFAstrocytes have emerged as integral partners with neurons in regulating synapse formation and function, but the mechanisms that mediate these interactions are not well understood. Here, we show that Sonic hedgehog (Shh) signaling in mature astrocytes is required for establishing structural organization and remodeling of cortical synapses in a cell type-specific manner. In the postnatal cortex, Shh signaling is active in a subpopulation of mature astrocytes localized primarily in deep cortical layers.
View Article and Find Full Text PDFH-current, also known as hyperpolarization-activated current (Ih), is an inward current generated by the hyperpolarization-activated cyclic nucleotide-gated (HCN) cation channels. Ih plays an essential role in regulating neuronal properties, synaptic integration and plasticity, and synchronous activity in the brain. As these biological factors change across development, the brain undergoes varying levels of vulnerability to disorders like schizophrenia that disrupt prefrontal cortex (PFC)-dependent function.
View Article and Find Full Text PDFProg Neuropsychopharmacol Biol Psychiatry
March 2018
The molecular components of the postsynaptic density (PSD) in excitatory synapses of the brain are currently being investigated as one of the major etiologies of neurodevelopmental disorders such as schizophrenia (SCZ) and autism. Postsynaptic density protein-95 (PSD-95) is a major regulator of synaptic maturation by interacting, stabilizing and trafficking N-methyl-d-aspartic acid receptors (NMDARs) and α-amino-3-hydroxy-5-methyl-4-isox-azoleproprionic acid receptors (AMPARs) to the postsynaptic membrane. Recently, there has been overwhelming evidence that associates PSD-95 disruption with cognitive and learning deficits observed in SCZ and autism.
View Article and Find Full Text PDF