Publications by authors named "Austeja Baleviciute"

Gene electrotransfer (GET) is non-viral gene delivery technique, also known as electroporation-mediated gene delivery or electrotransfection. GET is a method used to introduce foreign genetic material (such as DNA or RNA) into cells by applying external pulsed electric fields (PEFs) to create temporary pores in the cell membrane. This study was undertaken to examine the impact of buffer composition on the efficiency of GET in mammalian cells Also, we specifically compared the effectiveness of high-frequency nanosecond (ns) pulses with standard microsecond (µs) pulses.

View Article and Find Full Text PDF

Glioblastoma is a highly aggressive brain tumour that creates an immunosuppressive microenvironment. Microglia, the brain's resident immune cells, play a crucial role in this environment. Glioblastoma cells can reprogramme microglia to create a supportive niche that promotes tumour growth.

View Article and Find Full Text PDF

Allergic disorders are caused by a combination of hereditary and environmental factors. The hygiene hypothesis postulates that early-life microbial exposures impede the development of subsequent allergic disease. Recently developed "wildling" mice are genetically identical to standard laboratory specific pathogen-free (SPF) mice but are housed under seminatural conditions and have rich microbial exposures from birth.

View Article and Find Full Text PDF

Bovine colostrum (COL), the first milk secreted by lactating cows postpartum, is a rich source of bioactive compounds that exert a significant role in the survival, growth, and immune development of neonatal calves. This study investigated the immunomodulatory effects of COL on cytokine production in vitro using a Caco-2/THP-1 macrophage co-culture model stimulated with Phorbol 12-myristate 13-acetate (PMA). COL pretreatment significantly reduced IL-6 (241.

View Article and Find Full Text PDF

Bovine colostrum (BC) is the first milk produced by lactating cows after parturition. BC is rich in various amino acids, proteins, and fats essential for the nutrition of the neonate calves. Despite the evident beneficial effect of BC on calves, the effect of BC on blood biomarkers is poorly understood.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the use of bleomycin-based high-frequency nanosecond electrochemotherapy (nsECT) for treating LLC1 tumors in mice, demonstrating its effectiveness in tumor elimination and enhancing survival rates.
  • Results indicate that nsECT increases immune cell populations and antitumor antibody levels post-treatment, suggesting a significant immunomodulatory effect.
  • The treatment promotes specific immune responses, like upregulating PD 1 on CD4 Tr1 cells and enhancing various T cell and macrophage populations, indicating a potential combination of nsECT and immunotherapy for cancer treatment.
View Article and Find Full Text PDF

Objective: this work focuses on bleomycin electrochemotherapy using new modality of high repetition frequency unipolar nanosecond pulses.

Methods: As a tumor model, Lewis lung carcinoma (LLC1) cell line in C57BL mice (n = 42) was used. Electrochemotherapy was performed with intertumoral injection of bleomycin (50 μL of 1500 IU solution) followed by nanosecond and microsecond range electrical pulse delivery via parallel plate electrodes.

View Article and Find Full Text PDF

Pulsed electric field (PEF) is frequently used for intertumoral drug delivery resulting in a well-known anticancer treatment-electrochemotherapy. However, electrochemotherapy is associated with microsecond range of electrical pulses, while nanosecond range electrochemotherapy is almost non-existent. In this work, we analyzed the feasibility of nanosecond range pulse bursts for successful doxorubicin-based electrochemotherapy in vivo.

View Article and Find Full Text PDF

Micro-millisecond range electric field pulses have been used for decades to facilitate DNA transfer into cells and tissues, while the growing number of clinical trials underline the strong potential of DNA electroporation. In this work, we present new sub-microsecond range protocols and methodology enabling successful electrotransfection in the sub-microsecond range. To facilitate DNA transfer, a 3 kV/60 A and high frequency (1 MHz) sub-microsecond range square wave generator was applied in the study.

View Article and Find Full Text PDF