Objectives: In the absence of binaural hearing, individuals with single-sided deafness can adapt to use monaural level and spectral cues to improve their spatial hearing abilities. Contralateral routing of signal is the most common form of rehabilitation for individuals with single-sided deafness. However, little is known about how these devices affect monaural localization cues, which single-sided deafness listeners may become reliant on.
View Article and Find Full Text PDFHearing protection devices (HPDs) remain the first line of defense against hazardous noise exposure and noise-induced hearing loss (NIHL). Despite the increased awareness of NIHL as a major occupational health hazard, implementation of effective hearing protection interventions remains challenging in at-risk occupational groups including those in public safety that provide fire, emergency medical, or law enforcement services. A reduction of situational awareness has been reported as a primary barrier to including HPDs as routine personal protective equipment.
View Article and Find Full Text PDFObjective: The present study primarily aims to study and model the impedance dynamics following cochlear implant (CI) surgery in humans. Secondarily, to observe how the modulation of a single-dose topic dexamethasone alters this response.
Design: CI impedance and impedance subcomponents were measured in a day-by-day basis between CI surgery and its activation ( 1 month).
Purpose: This study investigated the objective and subjective benefit of a second cochlear implant (CI) on binaural listening tasks of speech understanding in noise and localization in younger and older adults. We aimed to determine if the aging population can utilize binaural cues and obtain comparable benefits from bilateral CI (BIL_CI) when compared to the younger population.
Methods: Twenty-nine adults with severe to profound bilateral sensorineural hearing loss were included.
Cochlear Implants Int
May 2022
Objectives: To investigate the perception of interaural level differences (ILDs) in children with bilateral cochlear implants (BiCIs) and compare them to normal hearing peers. As intracranial shifts in perception of ILDs might have an effect on localization, this was further investigated.
Methods: ILD responses on four different frequency bands (broadband, low-pass, mid-pass and high-pass) were measured in 9 children with BiCIs and 15 children with normal hearing.
Cochlear implant (CI) impedance reflects the status of the electro neural interface, potentially acting as a biomarker for inner ear injury. Most impedance shifts are diagnosed retrospectively because they are only measured in clinical appointments, with unknown behavior between visits. Here we study the application and discuss the benefits of daily and remote impedance measures with software specifically designed for this purpose.
View Article and Find Full Text PDFPurpose This study aimed to gain more insight into the primary auditory abilities of children with significant residual hearing in order to improve decision making when choosing between bimodal fitting or sequential bilateral cochlear implantation. Method Sound localization abilities, spatial release of masking, and fundamental frequency perception were tested. Nine children with bimodal fitting and seven children with sequential bilateral cochlear implants were included in the study.
View Article and Find Full Text PDFSeveral studies have demonstrated the advantages of the bilateral vs. unilateral cochlear implantation in listeners with bilateral severe to profound hearing loss. However, it remains unclear to what extent bilaterally implanted listeners have access to binaural cues, e.
View Article and Find Full Text PDFAs in any biophysical electrode-tissue environment, impedance measurement shows a complex relationship which reflects the electrical characteristics of the medium. In cochlear implants (CIs), which is mostly a stimulation-oriented device, the actual clinical approach only considers one arbitrary time-measure of the impedance. However, to determine the main electrical properties of the cochlear medium, the overall impedance and its subcomponents (i.
View Article and Find Full Text PDFThere is an increasing global recognition of the negative impact of hearing loss, and its association to many chronic health conditions. The deficits and disabilities associated with profound unilateral hearing loss, however, continue to be under-recognized and lack public awareness. Profound unilateral hearing loss significantly impairs spatial hearing abilities, which is reliant on the complex interaction of monaural and binaural hearing cues.
View Article and Find Full Text PDFBilateral cochlear-implant (CI) users and single-sided deaf listeners with a CI are less effective at localizing sounds than normal-hearing (NH) listeners. This performance gap is due to the degradation of binaural and monaural sound localization cues, caused by a combination of device-related and patient-related issues. In this study, we targeted the device-related issues by measuring sound localization performance of 11 NH listeners, listening to free-field stimuli processed by a real-time CI vocoder.
View Article and Find Full Text PDFDifferent amplification options are available for listeners with congenital unilateral conductive hearing loss (UCHL). For example, bone-conduction devices (BCDs) and middle ear implants. The present study investigated whether intervention with an active BCD, the Bonebridge, or a middle ear implant, the Vibrant Soundbridge (VSB), affected sound-localization performance of listeners with congenital UCHL.
View Article and Find Full Text PDF