J Cell Biochem
September 2024
Septins are a class of proteins with diverse and vital roles in cell biology. Structurally, they form hetero-oligomeric complexes and assemble into filaments, contributing to the organization of cells. These filaments act as scaffolds, aiding in processes like membrane remodeling, cytokinesis, and cell motility.
View Article and Find Full Text PDFComplement component fragment 5a (C5a) is one of the potent proinflammatory modulators of the complement system. C5a recruits two genomically related G protein-coupled receptors (GPCRs), like C5aR1 and C5aR2, constituting a binary complex. The C5a-C5aR1/C5aR2 binary complexes involve other transducer proteins like heterotrimeric G-proteins and β-arrestins to generate the fully active ternary complexes that trigger intracellular signaling through downstream effector molecules in tissues.
View Article and Find Full Text PDFThe complement system is central to the rapid immune response witnessed in vertebrates and invertebrates, which plays a crucial role in physiology and pathophysiology. Complement activation fuels the proteolytic cascade, which produces several complement fragments that interacts with a distinct set of complement receptors. Among all the complement fragments, C5a is one of the most potent anaphylatoxins, which exerts solid pro-inflammatory responses in a myriad of tissues by binding to the complement receptors such as C5aR1 (CD88, C5aR) and C5aR2 (GPR77, C5L2), which are part of the rhodopsin subfamily of G-protein coupled receptors.
View Article and Find Full Text PDFThe complement fragment C5a is one of the most potent proinflammatory glycoproteins liberated by the activation of the biochemical cascade of the complement system. C5a is established to interact with a set of genomically related transmembrane receptors, like C5aR1 (CD88, C5aR) and C5aR2 (GPR77, C5L2) with comparable affinity. The C5aR1 is a classical G-protein-coupled receptor (GPCR), whereas C5aR2 is a nonclassical GPCR that tailors immune cell activity potentially through β-arrestins rather than G-proteins.
View Article and Find Full Text PDFThe C5a receptor's (C5aR1) physiological function in various tissues depends on its high-affinity binding to the cationic proinflammatory glycoprotein C5a, produced during the activation of the complement system. However, an overstimulated complement can quickly alter the C5a-C5aR1 function from physiological to pathological, as has been noted in the case of several chronic inflammation-induced diseases like asthma, lung injury, multiorgan failure, sepsis, and now COVID-19. In the absence of the structural data, the current study provides the confirmatory biophysical validation of the hypothesized "two-site" binding interactions of C5a, involving (i) the N-terminus (NT) peptide ("Site1") and (ii) the extracellular loop 2 (ECL2) peptide of the extracellular surface (ECS) of the C5aR1 ("Site2"), as illustrated earlier in the reported model structural complex of C5a-C5aR1.
View Article and Find Full Text PDFComplement system plays a dual role; physiological as well as pathophysiological. While physiological role protects the host, pathophysiological role can substantially harm the host, by triggering several hyper-inflammatory pathways, referred as "hypercytokinaemia". Emerging clinical evidence suggests that exposure to severe acute respiratory syndrome coronavirus-2 (SARS-CoV2), tricks the complement to aberrantly activate the "hypercytokinaemia" loop, which significantly contributes to the severity of the COVID19.
View Article and Find Full Text PDFResveratrol (RSV), the active pharmaceutical ingredient (API) found in several fruits, nuts and marketed nutraceuticals is one of the promiscuous phytoalexin known to promote good health. The health benefits of RSV could be due to its antioxidant activity or its direct interaction with target proteins, resulting modulation of several cells signaling and inflammatory pathways. Among many of its disease preventing activities, RSV has been shown to ameliorate inflammation by directly binding the COX-1 and COX-2 enzymes, the established targets of common non-steroidal anti-inflammatory drugs (NSAIDs).
View Article and Find Full Text PDF