Publications by authors named "Aurore Thelie"

In poultry, in vitro propagated primordial germ cells (PGCs) represent an important tool for the cryopreservation of avian genetic resources. However, several studies have highlighted sexual differences exhibited by PGCs during in vitro propagation, which may compromise their reproductive capacities. To understand this phenomenon, we compared the proteome of pregonadal migratory male (ZZ) and female (ZW) chicken PGCs propagated in vitro by quantitative proteomic analysis using a GeLC-MS/MS strategy.

View Article and Find Full Text PDF

The molecular basis of male fertility remains unclear, especially in chickens, where decades of genetic selection increased male fertility variability as a side effect. As transcription and translation are highly limited in sperm, proteins are key molecules defining their functionality, making proteomic approaches one of the most adequate methods to investigate sperm capacity. In this context, it is interesting to combine complementary proteomic approaches to maximize the identification of proteins related to sperm-fertilizing ability.

View Article and Find Full Text PDF

The aim of this study was to evaluate the effects of freezing diluents supplemented in three potential amines/amino acids, namely, antioxidant cysteamine (2-aminoethanethiol [AET]), ergothioneine (ERG), and serine (SER), in optimization of chicken sperm cryopreservation. The semen of 36 Pradu Hang Dum males, selected based on their motility vigor score, was frozen by a simple freezing method using nitrogen vapors and dimethylformamide (DMF). In a first experiment, a wide range of AET, ERG, and SER doses were tested.

View Article and Find Full Text PDF

Among the reproductive biotechnologies needed to improve Japanese quail conservation and valorization, optimized conditions of semen methodologies including sampling, treatment, and artificial insemination are a prerequisite. However, they have been poorly developed due to specific physiological and behavioral features of the species. The aim of the present study was to optimize them, from semen collection/treatment up to artificial insemination procedures.

View Article and Find Full Text PDF

Background: Previously, we have demonstrated that genes involved in ovarian function are highly conserved throughout evolution. In this study, we aimed to document the conservation of genes involved in spermatogenesis from flies to vertebrates and their expression profiles in vertebrates.

Results: We retrieved 379 Drosophila melanogaster genes that are functionally involved in male reproduction according to their mutant phenotypes and listed their vertebrate orthologs.

View Article and Find Full Text PDF

Chicken semen conservation is an important tool for programs of genetic diversity management and of endangered breeds' conservation. However, the method still needs to be improved in order to be applied in a wide variety of environments and breeds. Our objective was to compare the effects of 2 external cryoprotectants saccharides (sucrose and raffinose) on the sperm freezability of a Thai local breed, Pradu Hang Dum, in which semen was frozen with a simple freezing method using nitrogen vapors and dimethyl formamide (DMF).

View Article and Find Full Text PDF

The seminal plasma is a very complex fluid, which surrounds sperm in semen. It contains numerous proteins including proteases and protease inhibitors that regulate proteolytic processes associated with protein activation and degradation. We previously identified a seminal protein, chicken liver trypsin inhibitor 1 (ClTI-1) over expressed in semen of roosters with high fertility, suggesting a role in male fertility.

View Article and Find Full Text PDF

For the past 50 yr, practices for ex situ preservation of endangered breeds have been extended. Semen and primordial germ cells, gonadic tissues have been frozen to create genetic stocks of chicken genetic diversity in cryobanks. Semen cryopreservation stays the preferred method since it is not invasive.

View Article and Find Full Text PDF

Currently, evaluation of sperm quality is primarily based on in vitro measures of sperm function such as motility, viability and/or acrosome reaction. However, results are often poorly correlated with fertility, and alternative diagnostic tools are therefore needed both in veterinary and human medicine. In a recent pilot study, we demonstrated that MS profiles from intact chicken sperm using MALDI-TOF profiles could detect significant differences between fertile/subfertile spermatozoa showing that such profiles could be useful for in vitro male fertility testing.

View Article and Find Full Text PDF

V1 interneurons are inhibitory neurons that play an essential role in vertebrate locomotion. The molecular mechanisms underlying their genesis remain, however, largely undefined. Here, we show that the transcription factor Prdm12 is selectively expressed in p1 progenitors of the hindbrain and spinal cord in the frog embryo, and that a similar restricted expression profile is observed in the nerve cord of other vertebrates as well as of the cephalochordate amphioxus.

View Article and Find Full Text PDF

Genome editing using engineered nucleases is used for targeted mutagenesis. But because genome editing does not target all loci with similar efficiencies, the mutation hit-rate at a given locus needs to be evaluated. The analysis of mutants obtained using engineered nucleases requires specific methods for mutation detection, and the enzyme mismatch cleavage method is used commonly for this purpose.

View Article and Find Full Text PDF

The basic helix-loop-helix (bHLH) transcriptional activator Ptf1a determines inhibitory GABAergic over excitatory glutamatergic neuronal cell fate in progenitors of the vertebrate dorsal spinal cord, cerebellum and retina. In an in situ hybridization expression survey of PR domain containing genes encoding putative chromatin-remodeling zinc finger transcription factors in Xenopus embryos, we identified Prdm13 as a histone methyltransferase belonging to the Ptf1a synexpression group. Gain and loss of Ptf1a function analyses in both frog and mice indicates that Prdm13 is positively regulated by Ptf1a and likely constitutes a direct transcriptional target.

View Article and Find Full Text PDF

Background: Accurate interpretation of transcriptome profiling by quantitative PCR requires the establishment of species-specific standards. However, the selection of reference genes for assessing RNA expression profiles in Xenopus laevis and Xenopus tropicalis was mostly based on historical reasons and they often only reflect the traditions of a laboratory.

Results: We investigated the expression stability of 10 genes (dicer1, drosha, eef1a1, elavl3, gsc, h4, odc1, rpl8, smn2, tbp), 8 of which are commonly used as internal controls in published RT-qPCR experiments.

View Article and Find Full Text PDF

During early embryo development, chromatin packaging is sustained by histones of maternal origin. Most histone messenger RNAs are not polyadenylated, but rather end in an evolutionarily conserved stem-loop that controls RNA processing, nucleocytoplasmic transport, stability, and translation via interactions with a specific protein named stem-loop-binding protein (SLBP). In mouse oocytes, mSLBP is synthesized abundantly during maturation and activates histone translation.

View Article and Find Full Text PDF

The maternal-zygotic transition (MZT) is an embryonic event that overlaps with and plays key roles in primary germ layer specification in vertebrates. During MZT, maternally supplied mRNAs are degraded while zygotic transcripts are synthesized to either reinforce the already specified cell fate or to trigger new cell identity. Here, we show that forced expression of the RNA-binding protein, XSeb4R, in animal pole blastomeres of Xenopus embryos, inappropriately stabilizes transcripts there, including maternal Sox3.

View Article and Find Full Text PDF

The Homez gene encodes a protein with three atypical homeodomains and two leucine zipper motifs of unknown function. Here we show that during neurula stages, Xenopus Homez is broadly expressed throughout the neural plate, the strongest expression being detected in the domains where primary neurons arise. At later stages, Homez is maintained throughout the central nervous system in differentiating progenitors.

View Article and Find Full Text PDF

The Zic transcription factors play critical roles during embryonic development. Mutations in the ZIC2 gene are associated with human holoprosencephaly, but the etiology is still unclear. Here, we report a novel function for ZIC2 as a regulator of β-catenin·TCF4-mediated transcription.

View Article and Find Full Text PDF

Oocyte/embryo genomics in mammals faces specific challenges due to limited biological material, to the comparison of models with different total RNA contents, and to expression of a specific set of genes often absent from commercially available microarrays. Here, we report experimental validation of a RNA amplification protocol for bovine oocytes and blastocysts. Using real-time PCR, we have confirmed that the profile of both abundant and scarce polyadenylated transcripts was conserved after RNA amplification.

View Article and Find Full Text PDF

Background: In bovine maturing oocytes and cleavage stage embryos, gene expression is mostly controlled at the post-transcriptional level, through degradation and deadenylation/polyadenylation. We have investigated how post transcriptional control of maternal transcripts was affected during in vitro and in vivo maturation, as a model of differential developmental competence.

Results: Using real time PCR, we have analyzed variation of maternal transcripts, in terms of abundance and polyadenylation, during in vitro or in vivo oocyte maturation and in vitro embryo development.

View Article and Find Full Text PDF

Maturation of immature bovine oocytes requires cytoplasmic polyadenylation and synthesis of a number of proteins involved in meiotic progression and metaphase-II arrest. Aurora serine-threonine kinases--localized in centrosomes, chromosomes, and midbody--regulate chromosome segregation and cytokinesis in somatic cells. In frog and mouse oocytes, Aurora A regulates polyadenylation-dependent translation of several mRNAs such as MOS and CCNB1, presumably by phosphorylating CPEB, and Aurora B phosphorylates histone H3 during meiosis.

View Article and Find Full Text PDF

Background: Mater (Maternal Antigen that Embryos Require), also known as Nalp5 (NACHT, leucine rich repeat and PYD containing 5), is an oocyte-specific maternal effect gene required for early embryonic development beyond the two-cell stage in mouse. We previously characterized the bovine orthologue MATER as an oocyte marker gene in cattle, and this gene was recently assigned to a QTL region for reproductive traits.

Results: Here we have analyzed gene expression during folliculogenesis and preimplantation embryo development.

View Article and Find Full Text PDF

Background: Zygote arrest 1 (ZAR1) is one of the few known oocyte-specific maternal-effect genes essential for the beginning of embryo development discovered in mice. This gene is evolutionary conserved in vertebrates and ZAR1 protein is characterized by the presence of atypical plant homeobox zing finger domain, suggesting its role in transcription regulation. This work was aimed at the study of this gene, which could be one of the key regulators of successful preimplantation development of domestic animals, in pig and cattle, as compared with human.

View Article and Find Full Text PDF