In many biomes, plants are subject to heatwaves, potentially causing irreversible damage to the photosynthetic apparatus. Field surveys have documented global, temperature-dependent patterns in photosynthetic heat tolerance (P ); however, it remains unclear if these patterns reflect acclimation in P or inherent differences among species adapted to contrasting habitats. To address these unknowns, we quantified seasonal variations in T (high temperature where minimal chlorophyll-a fluorescence rises rapidly, reflecting disruption to photosystem II) in 62 species native to 6 sites from 5 thermally contrasting biomes across Australia.
View Article and Find Full Text PDFHigh-temperature tolerance in plants is important in a warming world, with extreme heat waves predicted to increase in frequency and duration, potentially leading to lethal heating of leaves. Global patterns of high-temperature tolerance are documented in animals, but generally not in plants, limiting our ability to assess risks associated with climate warming. To assess whether there are global patterns in high-temperature tolerance of leaf metabolism, we quantified T (high temperature where minimal chlorophyll a fluorescence rises rapidly and thus photosystem II is disrupted) and T (temperature where leaf respiration in darkness is maximal, beyond which respiratory function rapidly declines) in upper canopy leaves of 218 plant species spanning seven biomes.
View Article and Find Full Text PDFPlant respiration constitutes a massive carbon flux to the atmosphere, and a major control on the evolution of the global carbon cycle. It therefore has the potential to modulate levels of climate change due to the human burning of fossil fuels. Neither current physiological nor terrestrial biosphere models adequately describe its short-term temperature response, and even minor differences in the shape of the response curve can significantly impact estimates of ecosystem carbon release and/or storage.
View Article and Find Full Text PDF