In the recent decades, biodegradable and biocompatible polyphosphoesters (PPEs) have gained wide attention in the biomedical field as relevant substitutes for conventional aliphatic polyesters. These amorphous materials of low glass transition temperature offer promise for the design of soft scaffolds for tissue engineering. Advantageously, the easy variation of the nature of the lateral pendant groups of PPEs allows the insertion of pendent unsaturations valuable for their further cross-linking.
View Article and Find Full Text PDFSHIP-1 is an inositol phosphatase predominantly expressed in hematopoietic cells. Over the ten past years, SHIP-1 has been described as an important regulator of immune functions. Here, we characterize a new inhibitory function for SHIP-1 in NOD2 signaling.
View Article and Find Full Text PDFNOD2 is one of the best characterized members of the cytosolic NOD-like receptor family. NOD2 is able to sense muramyl dipeptide, a specific bacterial cell wall component, and to subsequently induce various signaling pathways leading to NF-κB activation and autophagy, both events contributing to an efficient innate and adaptive immune response. Interestingly, loss-of-function NOD2 variants were associated with a higher susceptibility for Crohn disease, which highlights the physiological importance of proper regulation of NOD2 activity.
View Article and Find Full Text PDFBiochem Pharmacol
December 2010
For almost 10 years, Nod2 has been known as a cytosolic innate receptor able to sense peptidoglycan from Gram-positive and -negative bacteria and to trigger RIP2- and NF-κB-mediated pro-inflammatory and antibacterial response. Mutations in the gene encoding Nod2 in humans have been associated with Crohn's disease (CD). Mechanisms by which Nod2 variants can lead to CD development are still under investigation.
View Article and Find Full Text PDF