Publications by authors named "Aurora Lopez-Rosas"

Introduction: Glioblastoma multiforme (GBM) pathobiology is characterized by its significant induction of immunosuppression within the tumor microenvironment, predominantly mediated by immunosuppressive tumor-associated myeloid cells (TAMCs). Myeloid cells play a pivotal role in shaping the GBM microenvironment and influencing immune responses, with direct interactions with effector immune cells critically impacting these processes.

Methods: Our study investigates the role of the CXCR6/CXCL16 axis in T-cell myeloid interactions within GBM tissues.

View Article and Find Full Text PDF

Understanding the spatial relationship and functional interaction of immune cells in glioblastoma (GBM) is critical for developing new therapeutics that overcome the highly immunosuppressive tumor microenvironment. Our study showed that B and T cells form clusters within the GBM microenvironment within a 15-μm radius, suggesting that B and T cells could form immune synapses within the GBM. However, GBM-infiltrating B cells suppress the activation of CD8 T cells.

View Article and Find Full Text PDF

Glioblastoma (GBM) is a malignancy dominated by the infiltration of tumor-associated myeloid cells (TAMCs). Examination of TAMC metabolic phenotypes in mouse models and patients with GBM identified the de novo creatine metabolic pathway as a hallmark of TAMCs. Multi-omics analyses revealed that TAMCs surround the hypoxic peri-necrotic regions of GBM and express the creatine metabolic enzyme glycine amidinotransferase (GATM).

View Article and Find Full Text PDF

As a key component of the standard of care for glioblastoma, radiotherapy induces several immune resistance mechanisms, such as upregulation of CD47 and PD-L1. Here, leveraging these radiotherapy-elicited processes, we generate a bridging-lipid nanoparticle (B-LNP) that engages tumor-associated myeloid cells (TAMCs) to glioblastoma cells via anti-CD47/PD-L1 dual ligation. We show that the engager B-LNPs block CD47 and PD-L1 and promote TAMC phagocytic activity.

View Article and Find Full Text PDF

Immunotherapy has revolutionized cancer treatment but has yet to be translated into brain tumors. Studies in other solid tumors suggest a central role of B-cell immunity in driving immune-checkpoint-blockade efficacy. Using single-cell and single-nuclei transcriptomics of human glioblastoma and melanoma brain metastasis, we found that tumor-associated B-cells have high expression of checkpoint molecules, known to block B-cell-receptor downstream effector function such as plasmablast differentiation and antigen-presentation.

View Article and Find Full Text PDF

Glioblastoma is characterized by the robust infiltration of immunosuppressive tumor-associated myeloid cells (TAMCs). It is not fully understood how TAMCs survive in the acidic tumor microenvironment to cause immunosuppression in glioblastoma. Metabolic and RNA-seq analysis of TAMCs revealed that the arginine-ornithine-polyamine axis is up-regulated in glioblastoma TAMCs but not in tumor-infiltrating CD8 T cells.

View Article and Find Full Text PDF

Immunotherapy has revolutionized the treatment of many tumors. However, most glioblastoma (GBM) patients have not, so far, benefited from such successes. With the goal of exploring ways to boost anti-GBM immunity, we developed a B cell-based vaccine (BVax) that consists of 4-1BBL+ B cells activated with CD40 agonism and IFNγ stimulation.

View Article and Find Full Text PDF

Amino acid deprivation is a strategy that malignancies utilize to blunt anti-tumor T-cell immune responses. It has been proposed that amino acid insufficiency in T-cells is detected by GCN2 kinase, which through phosphorylation of EIF2α, shuts down global protein synthesis leading to T-cell arrest. The role of this amino acid stress sensor in the context of malignant brain tumors has not yet been studied, and may elucidate important insights into the mechanisms of T-cell survival in this harsh environment.

View Article and Find Full Text PDF

Tumor-associated myeloid cells (TAMCs) are key drivers of immunosuppression in the tumor microenvironment, which profoundly impedes the clinical response to immune-dependent and conventional therapeutic modalities. As a hallmark of glioblastoma (GBM), TAMCs are massively recruited to reach up to 50% of the brain tumor mass. Therefore, they have recently been recognized as an appealing therapeutic target to blunt immunosuppression in GBM with the hope of maximizing the clinical outcome of antitumor therapies.

View Article and Find Full Text PDF

The potent immunosuppression induced by glioblastoma (GBM) is one of the primary obstacles to finding effective immunotherapies. One hallmark of the GBM-associated immunosuppressive landscape is the massive infiltration of myeloid-derived suppressor cells (MDSC) and, to a lesser extent, regulatory T cells (Treg) within the tumor microenvironment. Here, we showed that regulatory B cells (Breg) are a prominent feature of the GBM microenvironment in both preclinical models and clinical samples.

View Article and Find Full Text PDF

The mechanisms by which regulatory T cells (Tregs) migrate to and function within the hypoxic tumor microenvironment are unclear. Our studies indicate that specific ablation of hypoxia-inducible factor 1α (HIF-1α) in Tregs results in enhanced CD8 T cell suppression versus wild-type Tregs under hypoxia, due to increased pyruvate import into the mitochondria. Importantly, HIF-1α-deficient Tregs are minimally affected by the inhibition of lipid oxidation, a fuel that is critical for Treg metabolism in tumors.

View Article and Find Full Text PDF

Although radiotherapy has been established as a major therapeutic modality for glioma, radical new avenues are critically needed to prevent inevitable tumor recurrence. Herein, we utilized a magnetic nanoparticle-based platform with cationic polymer modification to promote radiotherapy for glioma treatment. We found that the nanoplatform induced cytotoxicity to glioma cells under radiation as well as promoting significant survival benefits in both immunocompetent and aythmic mice with glioma.

View Article and Find Full Text PDF

The immunosuppressive microenvironment is one of the major factors promoting the growth of glioblastoma multiforme (GBM). Infiltration of CD4CD25Foxp3 regulatory T cells (Tregs) into the tumor microenvironment plays a significant role in the suppression of the anti-tumor immunity and portends a dismal prognosis for patients. Glioma-mediated secretion of chemo-attractant C-C motif ligand 2 and 22 (CCL2/22) has previously been shown by our group to promote Treg migration in vitro.

View Article and Find Full Text PDF

Fatty acid (FA) metabolism directly influences the functional capabilities of T cells in tumor microenvironments. Thus, developing tools to interrogate FA-uptake by T cell subsets is important for understanding tumor immunosuppression. Herein, we have generated a novel FA-Qdot 605 dye conjugate with superior sensitivity and flexibility to any of the previously commercially available alternatives.

View Article and Find Full Text PDF

The atrophy of skeletal muscles in patients with Krabbe disease is a major debilitating manifestation that worsens their quality of life and limits the clinical efficacy of current therapies. The pathogenic mechanism triggering muscle wasting is unknown. This study examined structural, functional, and metabolic changes conducive to muscle degeneration in Krabbe disease using the murine (twitcher mouse) and canine [globoid cell leukodystrophy (GLD) dog] models.

View Article and Find Full Text PDF

The membrane-bound receptor for platelet-derived growth factor A (PDGFRα) is crucial for controlling the production of oligodendrocytes (OLs) for myelination, but regulation of its activity during OL differentiation is largely unknown. We have examined the effect of increased sulfated content of galactosylceramides (sulfatides) on the regulation of PDGFRα in multipotential neural precursors (NPs) that are deficient in arylsulfatase A (ASA) activity. This enzyme is responsible for the lysosomal hydrolysis of sulfatides.

View Article and Find Full Text PDF

Sulfated galactosylceramides (sulfatides) are glycosphingolipids associated with cholesterol- and sphingolipid-enriched membrane microdomains (lipid rafts) and are highly expressed in brain tissue. Although it is known that sulfatide species show heterogeneity in their fatty acid acyl group composition throughout brain development, their lipid raft distribution and biological relevance is poorly understood. We validated a fast and sensitive ultra-high-pressure liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) method to measure developmentally regulated sulfatide species (C16:0, C18:0, C24:1, and C24:0) in central nervous system (CNS) lipid rafts isolated without using detergent.

View Article and Find Full Text PDF

Demyelination is a major contributor to the general decay of neural functions in children with Krabbe disease. However, recent reports have indicated a significant involvement of neurons and axons in the neuropathology of the disease. In this study, we have investigated the nature of cellular inclusions in the Krabbe brain.

View Article and Find Full Text PDF

Loss of function of galactosylceramidase lysosomal activity causes demyelination and vulnerability of various neuronal populations in Krabbe disease. Psychosine, a lipid-raft-associated sphingolipid that accumulates in this disease, is thought to trigger these abnormalities. Myelin-free in vitro analyses showed that psychosine inhibited fast axonal transport through the activation of axonal PP1 and GSK3β in the axon.

View Article and Find Full Text PDF

Patients with Krabbe disease, a genetic demyelinating syndrome caused by deficiency of galactosyl-ceramidase and the resulting accumulation of galactosyl-sphingolipids, develop signs of a dying-back axonopathy compounded by a deficiency of large-caliber axons. Here, we show that axonal caliber in Twitcher mice, an animal model for Krabbe disease, is impaired in peripheral axons and is accompanied by a progressive reduction in the abundance and phosphorylation of the three neurofilament (NF) subunits. These changes correlate with an increase in the density of NFs per cross-sectional area in numerous mutant peripheral axons and abnormal increases in the activity of two serine/threonine phosphatases (PP1 and PP2A) in mutant tissue.

View Article and Find Full Text PDF

Infantile Krabbe disease results in the accumulation of lipid-raft-associated galactosylsphingosine (psychosine), demyelination, neurodegeneration and premature death. Recently, axonopathy has been depicted as a contributing factor in the progression of neurodegeneration in the Twitcher mouse, a bona fide mouse model of Krabbe disease. Analysis of the temporal-expression profile of MBP (myelin basic protein) isoforms showed unexpected increases of the 14, 17 and 18.

View Article and Find Full Text PDF

Loss-of-function of the lysosomal enzyme galactosyl-ceramidase causes the accumulation of the lipid raft-associated sphingolipid psychosine, the disruption of postnatal myelination, neurodegeneration and early death in most cases of infantile Krabbe disease. This work presents a first study towards understanding the progression of axonal defects in this disease using the Twitcher mutant mouse. Axonal swellings were detected in axons within the mutant spinal cord as early as 1 week after birth.

View Article and Find Full Text PDF

Lipid rafts (LRs) are membrane realms characterized by high concentrations of cholesterol and sphingolipids. Often, they are portrayed as scaffolds on which many different signaling molecules can assemble their cascades. The idea of rafts as scaffolds is garnering significant attention as the consequences of LR disruption have been shown to be manifest in multiple signaling pathways.

View Article and Find Full Text PDF