Publications by authors named "Aurora D Neagoe"

The various applications of Ag(I) generated the necessity to obtain Ag(I)-accumulating organisms for the removal of surplus Ag(I) from contaminated sites or for the concentration of Ag(I) from Ag(I)-poor environments. In this study we obtained Ag(I)-accumulating cells by expressing plant metallothioneins (MTs) in the model . The cDNAs of seven MTs (AtMT1a, AtMT1c, AtMT2a, AtMT2b, AtMT3, AtMT4a and AtMT4b) and four MTs (NcMT1, NcMT2a, NcMT2b and NcMT3) fused to myrGFP displaying an -terminal myristoylation sequence for plasma membrane targeting were expressed in and checked for Ag(I)-related phenotype.

View Article and Find Full Text PDF

Accumulation of heavy metals without developing toxicity symptoms is a phenotype restricted to a small group of plants called hyperaccumulators, whose metal-related characteristics suggested the high potential in biotechnologies such as bioremediation and bioextraction. In an attempt to extrapolate the heavy metal hyperaccumulating phenotype to yeast, we obtained Saccharomyces cerevisiae cells armed with non-natural metal-binding hexapeptides targeted to the inner face of the plasma membrane, expected to sequester the metal ions once they penetrated the cell. We describe the construction of S.

View Article and Find Full Text PDF

In this study we engineered yeast cells armed for heavy metal accumulation by targeting plant metallothioneins to the inner face of the yeast plasma membrane. Metallothioneins (MTs) are cysteine-rich proteins involved in the buffering of excess metal ions, especially Cu(I), Zn(II) or Cd(II). The cDNAs of seven Arabidopsis thaliana MTs (AtMT1a, AtMT1c, AtMT2a, AtMT2b, AtMT3, AtMT4a and AtMT4b) and four Noccaea caerulescens MTs (NcMT1, NcMT2a, NcMT2b and NcMT3) were each translationally fused to the C-terminus of a myristoylation green fluorescent protein variant (myrGFP) and expressed in Saccharomyces cerevisiae cells.

View Article and Find Full Text PDF

Lanthanides are a group of non-essential elements with important imaging and therapeutic applications. Although trivalent lanthanide ions (Ln³⁺) are used as potent blockers of Ca²⁺ channels, the systematic studies correlating Ln³⁺ accumulation and toxicity to Ca²⁺ channel blocking activity are scarce. In this study, we made use of the eukaryotic model Saccharomyces cerevisiae to investigate the correlation between Ln³⁺ accumulation, their toxicity and their capacity to block the exogenous stress-induced Ca²⁺ influx into the cytosol.

View Article and Find Full Text PDF

The involvement of Ca(2+) in the response to high Mn(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+), Cd(2+), and Hg(2+) was investigated in Saccharomyces cerevisiae. The yeast cells responded through a sharp increase in cytosolic Ca(2+) when exposed to Cd(2+), and to a lesser extent to Cu(2+), but not to Mn(2+), Co(2+), Ni(2+), Zn(2+), or Hg(2+). The response to high Cd(2+) depended mainly on external Ca(2+) (transported through the Cch1p/Mid1p channel) but also on vacuolar Ca(2+) (released into the cytosol through the Yvc1p channel).

View Article and Find Full Text PDF

Blueberries (Vaccinium corymbosum L.) are a rich source of antioxidants and their consumption is believed to contribute to food-related protection against oxidative stress. In the present study, the chemoprotective action of blueberry extracts against cadmium toxicity was investigated using a cadmium-hypersensitive strain of Saccharomyces cerevisiae.

View Article and Find Full Text PDF