Species composition in high-alpine ecosystems is a useful indicator for monitoring climatic and environmental changes at the upper limits of habitable environments. We used environmental DNA (eDNA) analysis to document the breadth of high-alpine biodiversity present on Earth's highest mountain, Mt. Everest (8,849 m a.
View Article and Find Full Text PDFThe Everest region is characterized by its alpine glacial environment. In an effort to understand environmental change and tectonic activity, our team cored Taboche Lake, situated at 4,712 m along the western margin of the Ngozumpa Glacier. This research catalogs past earthquakes using geological records of the lake core that are important for the assessment of future earthquake hazards in the region and provides information for tectonic risk of glacial lake floods.
View Article and Find Full Text PDFThis case study provides a framework for future monitoring and evidence for human source pollution in the Khumbu region, Nepal. We analyzed the chemical composition (major ions, major/trace elements, black carbon, and stable water isotopes) of pre-monsoon stream water (4300-5250 m) and snow (5200-6665 m) samples collected from Mt. Everest, Mt.
View Article and Find Full Text PDFGlobal audiences are captivated by climbers pushing themselves to the limits in the hypoxic environment of Mount Everest. However, air pressure sets oxygen abundance, meaning it varies with the weather and climate warming. This presents safety issues for mountaineers but also an opportunity for public engagement around climate change.
View Article and Find Full Text PDFOver the last 5 million years, the global climate system has evolved toward a colder mean state, marked by large-amplitude oscillations in continental ice volume. Equatorward expansion of polar waters and strengthening temperature gradients have been detected. However, the response of the mid latitudes and high latitudes of the Southern Hemisphere is not well documented, despite the potential importance for climate feedbacks including sea ice distribution and low-high latitude heat transport.
View Article and Find Full Text PDFUnderstanding the interaction between climate and biotic evolution is crucial for deciphering the sensitivity of life. An enigmatic mass extinction occurred in the deep oceans during the Mid Pleistocene, with a loss of over 100 species (20%) of sea floor calcareous foraminifera. An evolutionarily conservative group, benthic foraminifera often comprise >50% of eukaryote biomass on the deep-ocean floor.
View Article and Find Full Text PDF