The intensive use of pesticides to control pests in agriculture has promoted several issues relating to environment. As chemical pesticides remain controversial, biocontrol agents originating from fungi could be an alternative. Among them, we highlight biocontrol agents derived from the fungi genus , which have been documented in limiting the growth of other phytopathogenic fungus in the roots and leaves of several plant species.
View Article and Find Full Text PDFBackground: Moniliophthora perniciosa is a phytopathogenic fungus responsible for witches' broom disease of cacao trees (Theobroma cacao L.). Understanding the molecular events during germination of the pathogen may enable the development of strategies for disease control in these economically important plants.
View Article and Find Full Text PDFWhite-rot basidiomycetes are the organisms that decompose lignin most efficiently, and is a promising species for ligninolytic enzyme production. There are several publications on applications for lignin degradation regarding the expression and secretion of laccase and manganese peroxidase (MnP) but no reports on the identification and characterization of lignin peroxidase (LiP), a relevant enzyme for the efficient breakdown of lignin. The object of this study was to identify and partially characterize, for the first time, gDNA, mRNA, and the corresponding lignin peroxidase (TvLiP) protein from strain CCMB561 from the Brazilian semiarid region.
View Article and Find Full Text PDFLegumains are cysteine proteases related to plant development, protein degradation, programmed cell death, and defense against pathogens. In this study, we have identified and characterized three legumains encoded by Theobroma cacao genome through in silico analyses, three-dimensional modeling, genetic expression pattern in different tissues and as a response to the inoculation of Moniliophthora perniciosa fungus. The three proteins were named TcLEG3, TcLEG6, and TcLEG9.
View Article and Find Full Text PDF