Publications by authors named "Aurisicchio L"

In the past decades, Chimeric Antigen Receptor (CAR)-T cell therapy has achieved remarkable success, leading to the approval of six therapeutic products for haematological malignancies. Recently, the therapeutic potential of this therapy has also been demonstrated in non-tumoral diseases. Currently, the manufacturing process to produce clinical-grade CAR-T cells is complex, time-consuming, and highly expensive.

View Article and Find Full Text PDF

Canine melanoma is a malignant and aggressive neoplasm showing clinical, histological, and molecular features similar to the human counterpart. In human medicine, epidermal growth factor receptors (EGFRs) have already been suggested as prognostic markers and potential therapeutic targets in cutaneous melanoma. The aim of this study was to evaluate the expression of HER-2 and HER-3 in canine melanomas by immunohistochemistry and correlate their expression to the clinicopathological parameters of the examined tumors.

View Article and Find Full Text PDF

The COVID-19 pandemic, once a global crisis, is now largely under control, a testament to the extraordinary global efforts involving vaccination and public health measures. However, the relentless evolution of SARS-CoV-2, leading to the emergence of new variants, continues to underscore the importance of remaining vigilant and adaptable. Monoclonal antibodies (mAbs) have stood out as a powerful and immediate therapeutic response to COVID-19.

View Article and Find Full Text PDF

Tumor-associated antigens (TAAs) represent attractive targets in the development of anti-cancer vaccines. The filamentous bacteriophage is a safe and versatile delivery nanosystem, and recombinant bacteriophages expressing TAA-derived peptides at a high density on the viral coat proteins improve TAA immunogenicity, triggering effective in vivo anti-tumor responses. To enhance the efficacy of the bacteriophage as an anti-tumor vaccine, we designed and generated phage particles expressing a CD8+ peptide derived from the human cancer germline antigen NY-ESO-1 decorated with the immunologically active lipid alpha-GalactosylCeramide (α-GalCer), a potent activator of invariant natural killer T (iNKT) cells.

View Article and Find Full Text PDF
Article Synopsis
  • DNA integrity is crucial for gene therapy and genetic vaccines, but this study questions the assumption that plasmid DNA is more stable than mRNA, which needs a cold chain for effectiveness.
  • Using the COVID-eVax vaccine targeting SARS-CoV-2, researchers demonstrated that different stability protocols produced more nicked DNA.
  • Surprisingly, the immune response from the vaccine was only slightly impacted by the amount of damaged DNA, indicating that such plasmid vaccines could remain effective even at higher storage temperatures, which is beneficial for low- and middle-income countries.
View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), has caused more than 760 million cases and over 6.8 million deaths as of March 2023. Vaccination has been the main strategy used to contain the spread of the virus and to prevent hospitalizations and deaths.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiologic agent of the COVID-19 pandemic, has been shown to infect a wide range of animal species, especially mammals, and besides human-to-human transmission, human-to-animal transmission has also been observed in some wild animals and pets, especially in cats. It has been demonstrated that cats are permissive to COVID-19 and are susceptible to airborne infections. Given the high transmissibility potential of SARS-CoV-2 to different host species and the close contact between humans and animals, it is crucial to find mechanisms to prevent the transmission chain and reduce the risk of spillover to susceptible species.

View Article and Find Full Text PDF

The COVID-19 pandemic and the need for additional safe, effective, and affordable vaccines gave new impetus into development of vaccine genetic platforms. Here we report the findings from the phase 1, first-in-human, dose-escalation study of COVID-eVax, a DNA vaccine encoding the receptor binding domain (RBD) of the SARS-CoV-2 spike protein. Sixty-eight healthy adults received two doses of 0.

View Article and Find Full Text PDF

BRAF-mutated melanoma relapsing after targeted therapies is an aggressive disease with unmet clinical need. Hence the need to identify novel combination therapies able to overcome drug resistance. miRNAs have emerged as orchestrators of non-genetic mechanisms adopted by melanoma cells to challenge therapies.

View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to evaluate how well the immune response from vaccinated individuals neutralizes different SARS-CoV-2 variants, focusing on variants of concern (VOCs) like Delta and Omicron.
  • Researchers used a pseudovirus-based neutralization assay (PVNA) to measure neutralizing antibodies (nAbs) in sera collected from vaccinated individuals and COVID-19 convalescents, comparing the effectiveness of different vaccines.
  • Results showed that while PVNA correlated well with the traditional micro-neutralization test, there was decreased nAb activity over time and significant reductions against Delta and Omicron compared to the wild type, although booster doses improved response against Omicron.
View Article and Find Full Text PDF

The COVID-19 pandemic is entering a new era with the approval of many SARS-CoV-2 vaccines. In spite of the restoration of an almost normal way of life thanks to the immune protection elicited by these innovative vaccines, we are still facing high viral circulation, with a significant number of deaths. To further explore alternative vaccination platforms, we developed COVID-Vax-a genetic vaccine based on plasmid DNA encoding the RBD domain of the SARS-CoV-2 spike protein.

View Article and Find Full Text PDF
Article Synopsis
  • DNA-based vaccines show promise for fighting infections and cancer but have manufacturing drawbacks like long lead times.
  • Researchers developed a new method using PCR-produced amplicon expression vectors for creating DNA vaccines that can elicit immune responses in animal cancer models.
  • The study found that these amplicons effectively triggered immune reactions against tumors and enhanced tumor growth control when combined with immune-checkpoint inhibitors (ICIs), suggesting a new approach for cancer immunotherapy.
View Article and Find Full Text PDF

Background: Immune checkpoint inhibitors are still unable to provide clinical benefit to the large majority of non-small cell lung cancer (NSCLC) patients. A deeper characterization of the tumor immune microenvironment (TIME) is expected to shed light on the mechanisms of cancer immune evasion and resistance to immunotherapy. Here, we exploited malignant pleural effusions (MPEs) from lung adenocarcinoma (LUAD) patients as a model system to decipher TIME in metastatic NSCLC.

View Article and Find Full Text PDF

Immune checkpoint inhibitors (ICI) based on anti-CTLA-4 (αCTLA-4) and anti-PD1 (αPD1) are being tested in combination with different therapeutic approaches including other immunotherapies such as neoantigen cancer vaccines (NCV). Here we explored, in two cancer murine models, different therapeutic combinations of ICI with personalized DNA vaccines expressing neoantigens and delivered by electroporation (EP). Anti-cancer efficacy was evaluated using vaccines with or without CD4 epitopes.

View Article and Find Full Text PDF

The COVID-19 pandemic caused by SARS-CoV-2 has made the development of safe and effective vaccines a critical priority. To date, four vaccines have been approved by European and American authorities for preventing COVID-19, but the development of additional vaccine platforms with improved supply and logistics profiles remains a pressing need. Here we report the preclinical evaluation of a novel COVID-19 vaccine candidate based on the electroporation of engineered, synthetic cDNA encoding a viral antigen in the skeletal muscle.

View Article and Find Full Text PDF

COVID-19 is a rapidly spreading disease, posing a huge hazard to global health. The plasmid vaccine pTK1A-TPA-SpikeA (named COVID-Vax) encodes the severe acute respiratory syndrome coronavirus 2 S protein receptor-binding domain, developed for intramuscular injection followed by electroporation (EP). The aim of this study was to assess the systemic toxicity and local tolerance of COVID-Vax delivered intramuscularly followed by EP in Sprague Dawley (SD) rats.

View Article and Find Full Text PDF

Cancer is a heterogeneous disease and its treatment remains unsatisfactory with inconstant therapeutic responses. This variability could be related, at least in part, to different and highly personalized gut microbiota compositions. Different studies have shown an impact of microbiota on antitumor therapy.

View Article and Find Full Text PDF

We developed a novel reporter transgenic zebrafish model called MITO-Luc/GFP zebrafish in which GFP and luciferase expression are under the control of the master regulator of proliferation NF-Y. In MITO-Luc/GFP zebrafish it is possible to visualize cell proliferation in vivo by fluorescence and bioluminescence. In this animal model, GFP and luciferase expression occur in early living embryos, becoming tissue specific in juvenile and adult zebrafish.

View Article and Find Full Text PDF

Background: Tracking the genetic variability of Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2) is a crucial challenge. Mainly to identify target sequences in order to generate robust vaccines and neutralizing monoclonal antibodies, but also to track viral genetic temporal and geographic evolution and to mine for variants associated with reduced or increased disease severity. Several online tools and bioinformatic phylogenetic analyses have been released, but the main interest lies in the Spike protein, which is the pivotal element of current vaccine design, and in the Receptor Binding Domain, that accounts for most of the neutralizing the antibody activity.

View Article and Find Full Text PDF

is the most common opportunistic fungal pathogen and causes invasive pulmonary aspergillosis (IPA), with high mortality among immunosuppressed patients. The fungistatic activity of all- retinoic acid (ATRA) has been recently described We evaluated the efficacy of ATRA and its potential synergistic interaction with other antifungal drugs. A rat model of IPA and experiments were performed to assess the efficacy of ATRA against in association with classical antifungal drugs and studies used to clarify its mechanism of action.

View Article and Find Full Text PDF

Breast implant-associated anaplastic large-cell lymphoma (BI-ALCL) is an uncommon peripheral T cell lymphoma usually presenting as a delayed peri-implant effusion. Chronic inflammation elicited by the implant has been implicated in its pathogenesis. Infection or implant rupture may also be responsible for late seromas.

View Article and Find Full Text PDF

COVID-19 has rapidly spread all over the world, progressing into a pandemic. This situation has urgently impelled many companies and public research institutes to concentrate their efforts on research for effective therapeutics. Here, we outline the strategies and targets currently adopted in developing a vaccine against SARS-CoV-2.

View Article and Find Full Text PDF

Objective: Timed neuropsychological tests do not take into account physical impairment during scoring procedures. Dysarthria and upper limb impairment can be easily measured with the PATA rate test (PRT) and the nine-hole pegboard test (9HPT). We recently validated a normalization method for timed neuropsychological tests using the PRT and 9HPT (p9NORM).

View Article and Find Full Text PDF