Publications by authors named "Aurimas Sakanas"

This work shows how to control the surface density and size of InAs/InP quantum dots over a wide range by tailoring the conditions of Stranski-Krastanov growth. We demonstrate that in the near-critical growth regime, the density of quantum dots can be tuned between and   . Furthermore, employing both experimental and modeling approaches, we show that the size (and therefore the emission wavelength) of InAs nanoislands on InP can be controlled independently from their surface density.

View Article and Find Full Text PDF

Single indistinguishable photons at telecom C-band wavelengths are essential for quantum networks and the future quantum internet. However, high-throughput technology for single-photon generation at 1550 nm remained a missing building block to overcome present limitations in quantum communication and information technologies. Here, we demonstrate the high-throughput fabrication of quantum-photonic integrated devices operating at C-band wavelengths based on epitaxial semiconductor quantum dots.

View Article and Find Full Text PDF

Quantum information processing with photons in small-footprint and highly integrated silicon-based photonic chips requires incorporating non-classical light sources. In this respect, self-assembled III-V semiconductor quantum dots (QDs) are an attractive solution, however, they must be combined with the silicon platform. Here, by utilizing the large-area direct bonding technique, we demonstrate the hybridization of InP and SOI chips, which allows for coupling single photons to the SOI chip interior, offering cost-effective scalability in setting up a multi-source environment for quantum photonic chips.

View Article and Find Full Text PDF

Microscopic single-mode lasers with low power consumption, large modulation bandwidth, and ultra-narrow linewidth are essential for numerous applications, such as on-chip photonic networks. A recently demonstrated microlaser using an optical Fano resonance between a discrete mode and a continuum of modes to form one of the mirrors, i.e.

View Article and Find Full Text PDF

Semiconductor quantum dots (QDs) enable the generation of single and entangled photons, which are useful for various applications in photonic quantum technologies. Specifically for quantum communication via fiber-optical networks, operation in the telecom C-band centered around 1550 nm is ideal. The direct generation of QD-photons in this spectral range with high quantum-optical quality, however, remained challenging.

View Article and Find Full Text PDF

We demonstrate comprehensive numerical studies on a hybrid III-V/Si-based waveguide system, serving as a platform for efficient light coupling between an integrated III-V quantum dot emitter to an on-chip quantum photonic integrated circuit defined on a silicon substrate. We propose a platform consisting of a hybrid InP/Si waveguide and an InP-embedded InAs quantum dot, emitting at the telecom C-band near 1550 nm. The platform can be fabricated using existing semiconductor processing technologies.

View Article and Find Full Text PDF

Whereas the Si photonic platform is highly attractive for scalable optical quantum information processing, it lacks practical solutions for efficient photon generation. Self-assembled semiconductor quantum dots (QDs) efficiently emit photons in the telecom bands (1460-1625 nm) and allow for heterogeneous integration with Si. In this work, we report on a novel, robust, and industry-compatible approach for achieving single-photon emission from InAs/InP QDs heterogeneously integrated with a Si substrate.

View Article and Find Full Text PDF