Publications by authors named "Aurica P Chiriac"

Eying the increasing impact of hyaluronic acid (HA) and its multifaceted applications, this study employs a non-toxic, one-pot strategy to develop injectable, self-healing hydrogels for biomedical applications. Phytic acid (PA), a plant-derived organic acid with high biocompatibility and numerous hydroxyl groups, can act as a cross-linking agent to form hydrogen-bonded networks with the HA chains. The study examined the optimal mass ratio of HA to PA to achieve superior hydrogel performance.

View Article and Find Full Text PDF

This research focuses on the synthesis of hydrogels exhibiting enhanced antioxidant properties derived from hyaluronic acid (HA) and poly(ethylene brassylate-co-squaric acid) (PEBSA), a copolymacrolactone that have the ability to be used in drug delivery applications. Quercetin (Q), a bioflavonoid with strong antioxidant properties, is employed as a bioactive compound. The biomolecule is encapsulated in the polymeric network using different entrapment techniques, including the initial formation of a complex between PEBSA and Q, which is demonstrated through the dynamic light scattering technique.

View Article and Find Full Text PDF

Introduction: Polymer nanogels are among the most promising nanoplatforms for use in biomedical applications. The substantial interest for these drug carriers is to enhance the transportation of bioactive substances, reduce the side effects, and achieve optimal action on the curative sites by targeting delivery and triggering the release of the drugs in a controlled and continuous mode.

Area Covered: The review discusses the opportunities, applications, and challenges of synthetic polypeptide nanogels in biomedicine, with an emphasis on the recent progress in cancer therapy.

View Article and Find Full Text PDF

In recent years, increasing interest has been accorded to polyester-based polymer microstructures, driven by their promising potential as advanced drug delivery systems. This study presents the preparation and characterization of new polymeric microparticles based on poly(ethylene brassylate-co-squaric acid) loaded with norfloxacin, a broad-spectrum antibiotic. Polymacrolactone was synthesised in mild conditions through the emulsion polymerization of bio-based and renewable monomers, ethylene brassylate, and squaric acid.

View Article and Find Full Text PDF

The multiple uses of cellulose nanofibrils (CNFs) originate from their availability from renewable resources, and are due to their physico-chemical properties, biodegradability and biocompatibility. At the same time, reducing sensitivity to humidity, increasing interfacial adhesion and hydrophobic modification of the CNF surface to diversify applications and improve operation, are current targets pursued. This study focuses on the preparation of a novel gel structure using cellulose nanofibrils (CNFs) and poly(ethylene brassylate-co-squaric acid) (PEBSA), a bio-based copolymacrolactone.

View Article and Find Full Text PDF

In light of the increasing resistance of pathogenic microorganisms to the action of antibiotics, essential oils extracted from plants with therapeutic activity provide a significant alternative to obtaining dressings for the treatment of skin wounds. The encapsulation of essential oils in an amphiphilic gel network allows better dispersion and preservation of hydrophobic bioactive substances while promoting their prolonged release. In this study, we focused on the development of a poly (vinyl alcohol) (PVA)/poly (ethylene brassylate-co-squaric acid) (PEBSA) platform embedded with thymol (Thy), and α-tocopherol (α-Tcp) as a co-drug structure with prospective use for the treatment and healing of skin wounds.

View Article and Find Full Text PDF

Owing to its antibacterial, anti-inflammatory, and antioxidant activities, in the last few years, lavender essential oil (LVO) has been used in medical applications as a promising approach for treating infected wounds. However, the practical applicability of LVO is limited by its high volatility and storage stability. This study aimed to develop a novel hybrid hydrogel by combining phytic acid (PA)-crosslinked sodium alginate (SA) and poly(itaconic anhydride-co-3,9-divinyl-2,4,8,10-tetraoxaspiro[5.

View Article and Find Full Text PDF

Low-molecular-weight gelators (LMWGs) are compounds with an intrinsic tendency to self-assemble forming various supramolecular architectures via non-covalent interactions. Considering that the development of supramolecular assemblies through the synergy of molecules is not entirely understood at the molecular level, this study introduced a Fmoc-short peptide and four Fmoc-amino acids as building blocks for the self-assembly/co-assembly process. Hence, we investigated the formation of supramolecular gels starting from the molecular aggregation following two triggering approaches: solvent/co-solvent method and pH switch.

View Article and Find Full Text PDF

The implementation of personalized patches, tailored to individual genetic profiles and containing specific amounts of bioactive substances, has the potential to produce a transformative impact within the medical sector. There are several methods of designing scaffolds in the context of personalized medicine, with three-dimensional (3D) printing emerging as a pivotal technique. This innovative approach can be used to construct a wide variety of pharmaceutical dosage forms, characterized by variations in shape, release profile, and drug combinations, allowing precise dose individualization and the incorporation of multiple therapeutic agents.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers are developing new multifunctional materials, specifically a cryogel system made from PVA and PEBSA that incorporates an antibacterial essential oil, thymol (Thy).
  • The study aims to enhance the cryogel's properties by adding α-tocopherol (α-Tcp), creating a dual therapeutic effect through both Thymol and α-Tcp.
  • The results show that the combined antioxidant effects of Thy and α-Tcp with the PEBSA copolymer are synergistic, achieving a cumulative efficiency of 97.1%, thus improving the applicability of these cryogel systems.
View Article and Find Full Text PDF

Development of natural protein-based hydrogels with self-healing performance and tunable physical properties has attracted increased attention owing to their wide potential not only in the pharmaceutical field, but also in wounds management. This work reports the development of a versatile hydrogel based on enzymatically-crosslinked gelatin and nanogels loaded with amoxicillin (Amox), an antibiotic used in wound infections. The transglutaminase (TGase)-crosslinked hydrogels and encapsulating nanogels were formed rapidly through enzymatic crosslinking and self-assembly interactions in mild conditions.

View Article and Find Full Text PDF

Double network (DN) hydrogels composed of self-assembling low-molecular-weight gelators and a hybrid polymer network are of particular interest for many emerging biomedical applications, such as tissue regeneration and drug delivery. The major benefits of these structures are their distinct mechanical properties as well as their ability to mimic the hierarchical features of the extracellular matrix. Herein, we describe a hybrid synthetic/natural polymer gel that acts as the initial network based on sodium alginate and a copolymer, namely poly(itaconic anhydride-co-3,9-divinyl-2,4,8,10-tetraoxaspiro (5,5) undecane).

View Article and Find Full Text PDF

Short aromatic peptide derivatives, i.e., peptides or amino acids modified with aromatic groups, such as 9-fluorenylmethoxycarbonyl (Fmoc), can self-assemble into extracellular matrix-like hydrogels due to their nanofibrillar architecture.

View Article and Find Full Text PDF

The study presents the achievement of a new assembly with antioxidant behaviour based on a copolymacrolactone structure that encapsulates erythritol (Eryt). Poly(ethylene brassylate-co-squaric acid) (PEBSA) was synthesised in environmentally friendly conditions, respectively, through a process in suspension in water by opening the cycle of ethylene brassylate macrolactone, followed by condensation with squaric acid. The compound synthesised in suspension was characterised by comparison with the polymer obtained by polymerisation in solution.

View Article and Find Full Text PDF
Article Synopsis
  • * Phytic acid not only enhances the hydrogels' biological stability without toxicity but also contributes to improved antioxidant and antibacterial effects.
  • * Studies indicate that these hydrogels can successfully release procaine (a model drug) and support fibroblast cell viability, suggesting their potential use as therapeutic scaffolds in skin tissue engineering.
View Article and Find Full Text PDF

The study presents the development of a new copolymacrolactone structure based on ethylene brassylate (EB) and squaric acid (SA) with different ratios between comonomers. The new system was tested as a network for essential oils encapsulation. The structure of the copolymers was confirmed by spectroscopic investigations and correlated in interdependence with the comonomers content.

View Article and Find Full Text PDF

One of the methods of obtaining supramolecular gels consists of the possibility of self-assembly of low molecular weight gelators (LMWGs). However, LMWG-based gels are often difficult to handle, easy to destroy and have poor rheological performance. In order to improve the gels’ properties, the LMWGs molecules are co-assembled, which induces more cross-links with more stable structures.

View Article and Find Full Text PDF

Squaric acid (SA) is a compound with potential to crosslink biomacromolecules. Although SA has become over the last years a well-known crosslinking agent as a result of its good biocompatibility, glutaraldehyde (GA), a compound with proven cytotoxicity is still one of the most used crosslinkers to develop nanomaterials. In this regard, the novelty of the present study consists in determining whether it may be possible to substitute GA with a new bifunctional and biocompatible compound, such as SA, in the process of enzyme immobilization on the surface of magnetic nanoparticles (MNPs).

View Article and Find Full Text PDF

Physical cryogels were obtained using the successive freeze-thaw technique of poly(vinyl alcohol) (PVA)/poly(ethylene brassylate-co-squaric acid) (PEBSA) solutions. The cryogel systems were prepared by using two different molecular weights of PVA and PEBSA with three different ratios between the ethylene brassylate (EB) and squaric acid (SA) comonomers. The presence of interactions, the thermal properties and the morphology were investigated using Fourier Transform Infrared Spectroscopy (FT-IR), thermogravimetry (TGA and DTG) and scanning electron microscopy (SEM), respectively.

View Article and Find Full Text PDF

This study reports a strategy for developing a biohybrid complex based on a natural/synthetic polymer conjugate as a gel-type structure. Coupling synthetic polymers with natural compounds represents an important approach to generating gels with superior properties and with potential for biomedical applications. The study presents the preparation of hybrid gels with tunable characteristics by using a spiroacetal polymer and alginate as co-partners in different ratios.

View Article and Find Full Text PDF

In the last years, physical hydrogels have been widely studied due to the characteristics of these structures, respectively the non-covalent interactions and the absence of other necessary components for the cross-linking processes. Low molecular weight gelators are a class of small molecules which form higher ordered structures through hydrogen bonding and π-π interactions. In this context it is known that the formation of hydrogels based on FMOC-amino acids is determined by the primary structures of amino acids and the secondary structure arrangement (alpha-helix or beta-sheet motifs).

View Article and Find Full Text PDF

In this study, lemon balm ( L.) and dill ( L.) essential oils (EOs) were encapsulated into collagen hydrolysates extracted from bovine tendons and rabbit skins, both mixed with chitosan (CS) by using the coaxial electrospinning technique for potential wound dressing applications.

View Article and Find Full Text PDF

In the last decade, numerous innovative strategies have been used to obtain highly efficient synthetic or semi-synthetic biomaterials. Between these innovative biomaterials, hydrogels occupy a distinct place due to their superior biological and physico-chemical characteristics. Alginate is a natural linear polysaccharide with important physico-chemical and biological properties.

View Article and Find Full Text PDF

The article reviews the possibilities of encapsulating essential oils EOs, due to their multiple benefits, controlled release, and in order to protect them from environmental conditions. Thus, we present the natural polymers and the synthetic macromolecular chains that are commonly used as networks for embedding EOs, owing to their biodegradability and biocompatibility, interdependent encapsulation methods, and potential applicability of bioactive blend structures. The possibilities of using artificial intelligence to evaluate the bioactivity of EOs-in direct correlation with their chemical constitutions and structures, in order to avoid complex laboratory analyses, to save money and time, and to enhance the final consistency of the products-are also presented.

View Article and Find Full Text PDF

Bio-based compounds are a leading direction in the context of the increased demand for these materials due to the numerous advantages associated with their use over conventional materials, which hardly degrade in the environment. At the same time, the use of essential oils and their components is generated mainly by finding alternative solutions to antibiotics and synthetic preservatives due to their bioactive characteristics, but also to their synergistic capacity during the manifestation of different biological properties. The present study is devoted to poly(ethylene brassylate-co-squaric acid) (PEBSA), synthesis and its use for thymol encapsulation and antibacterial system formation.

View Article and Find Full Text PDF