As a result of global warming and climate change, the number and intensity of weather events such as droughts, heat waves, and floods are increasing, resulting in major losses in crop yield worldwide. Combined with the accumulation of different pollutants, this situation is leading to a gradual increase in the complexity of environmental factors affecting plants. We recently used the term 'multifactorial stress combination' (MFSC) to describe the impact of three or more stressors occurring simultaneously or sequentially on plants.
View Article and Find Full Text PDFClimate change poses significant challenges to global agriculture, with rising temperatures, altered precipitation patterns, and increased frequency of extreme weather events threatening crop yields. These changes exceed the adaptability thresholds of many crops, decreasing their yield and threatening food security. At plant physiological levels, climate change-induced stressors disrupt photosynthesis, growth, and reproductive processes, contributing to a reduced productivity.
View Article and Find Full Text PDFAfter the perception of vegetation proximity by phytochrome photoreceptors, shade-avoider plants initiate a set of responses known as the shade avoidance syndrome (SAS). Shade perception by the phytochrome B (phyB) photoreceptor unleashes the PHYTOCHROME INTERACTING FACTORs and initiates SAS responses. In Arabidopsis (Arabidopsis thaliana) seedlings, shade perception involves rapid and massive changes in gene expression, increases auxin production, and promotes hypocotyl elongation.
View Article and Find Full Text PDFClimate change induces significant abiotic stresses that adversely affect crop yields. One promising solution to improve plant resilience under adverse conditions is the application of exogenous salicylic acid (SA). However, its negative effects on growth and development are a concern.
View Article and Find Full Text PDFDisease severity and drought due to climate change present significant challenges to orchard productivity. This study examines the effects of spring inoculation with () on sweet cherry plants, cvs. Bing and Santina with varying defense responses, assessing plant growth, physiological variables (water potential, gas exchange, and plant hydraulic conductance), and the levels of abscisic acid (ABA) and salicylic acid (SA) under two summer irrigation levels.
View Article and Find Full Text PDFPlants growing under natural conditions experience high light (HL) intensities that are often accompanied by elevated temperatures. These conditions could affect photosynthesis, reduce yield, and negatively impact agricultural productivity. The combination of different abiotic challenges creates a new type of stress for plants by generating complex environmental conditions that often exceed the impact of their individual parts.
View Article and Find Full Text PDFPlant neighbors in arid environments can ameliorate abiotic stress by reducing insolation, but they also attract herbivores and pathogens, especially when neighbors are close relatives that share similar antagonists. Plants' metabolic profiles provide a chemical fingerprint of the physiological processes behind plant responses to different environmental stresses. For example, abscisic acid and proline, mainly involved in stomatal closure and osmotic adjustment, can induce plant responses to abiotic stress, while jasmonic acid and salicylic acid primarily regulate plant defense to herbivory or pathogens.
View Article and Find Full Text PDFNeedle blights are serious fungal diseases affecting European natural and planted pine forests. Brown-spot needle blight (BSNB) disease, caused by the fungus Lecanosticta acicola, causes canopy defoliation and severe productivity losses, with consequences depending on host susceptibility. To gain new insights into BSNB plant-pathogen interactions, constitutive and pathogen-induced traits were assessed in two host species with differential disease susceptibility.
View Article and Find Full Text PDFThe endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) are highly dependent on phytohormones such as salicylic acid (SA). In this study, the effect of SA supplementation and the lack of endogenous SA on glutathione metabolism were investigated under ER stress in wild-type (WT) and transgenic SA-deficient NahG tomato (Solanum lycopersicum L.) plants.
View Article and Find Full Text PDFPlants encounter combinations of different abiotic stresses such as salinity (S) and high light (HL). These environmental conditions have a detrimental effect on plant growth and development, posing a threat to agricultural production. Metabolic changes play a crucial role in enabling plants to adapt to fluctuations in their environment.
View Article and Find Full Text PDFPolyamines are small aliphatic polycations present in all living organisms. In plants, the most abundant polyamines are putrescine (Put), spermidine (Spd) and spermine (Spm). Polyamine levels change in response to different pathogens, including Pseudomonas syringae pv.
View Article and Find Full Text PDFBackground: Plants growing in the field are subjected to combinations of abiotic stresses. These conditions pose a devastating threat to crops, decreasing their yield and causing a negative economic impact on agricultural production. Metabolic responses play a key role in plant acclimation to stress and natural variation for these metabolic changes could be key for plant adaptation to fluctuating environmental conditions.
View Article and Find Full Text PDFHortic Res
July 2023
Environmental changes derived from global warming and human activities increase the intensity and frequency of stressful conditions for plants. Multiple abiotic factors acting simultaneously enhance stress pressure and drastically reduce plant growth, yield, and survival. Stress combination causes a specific stress situation that induces a particular plant response different to the sum of responses to the individual stresses.
View Article and Find Full Text PDFComposite generalist herbivores are comprised of host-adapted populations that retain the ability to shift hosts. The degree and overlap of mechanisms used by host-adapted generalist and specialist herbivores to overcome the same host plant defenses are largely unknown. Tetranychidae mites are exceptionally suited to address the relationship between host adaptation and specialization in herbivores as this group harbors closely related species with remarkably different host ranges-an extreme generalist the two-spotted spider mite (Tetranychus urticae Koch [Tu]) and the Solanaceous specialist Tetranychus evansi (Te).
View Article and Find Full Text PDFPlant Cell Environ
September 2023
Plant transpiration is a fundamental process that determines plant water use efficiency (WUE), thermoregulation, nutrition, and growth. How transpiration impacts on such essential physiological aspects and how the environment modulates these effects are fundamental questions about which little is known. We investigated the genetic and environmental factors underlying natural variation in plant transpiration and water use efficiency in a population of natural Arabidopsis thaliana accessions grown under homogeneous conditions.
View Article and Find Full Text PDFPlants are frequently exposed to different combinations of soil constraints including salinity and different herbicides. These abiotic conditions negatively affect photosynthesis, growth and plant development resulting in limitations in agriculture production. To respond to these conditions, plants accumulate different metabolites that restore cellular homeostasis and are key for stress acclimation processes.
View Article and Find Full Text PDFClimate change due to different human activities is causing adverse environmental conditions and uncontrolled extreme weather events. These harsh conditions are directly affecting the crop areas, and consequently, their yield (both in quantity and quality) is often impaired. It is essential to seek new advanced technologies to allow plants to tolerate environmental stresses and maintain their normal growth and development.
View Article and Find Full Text PDFIntroduction: Citrus productivity has been decreasing in the last decade in the Mediterranean basin as a consequence of climate change and the high levels of salinity found in the aquifers. Citrus varieties are cultivated grafted onto a rootstock, which has been reported as responsible for plant tolerance to adverse situations. However, other important factors for stress tolerance relying in the scion have been less studied.
View Article and Find Full Text PDFTrace metal element (TME) pollution is a major threat to plants, animals and humans. Agricultural products contaminated with metals may pose health risks for people; therefore, international standards have been established by the FAO/WHO to ensure food safety as well as the possibility of crop production in contaminated soils. This study aimed to assess the accumulating potential of aluminum and barium in the roots, shoots and fruits of Abelmoschus esculentus L.
View Article and Find Full Text PDFStrawberry tree () is a small resilient species with a circum-Mediterranean distribution, high ecological relevance in southern European forests and with several economical applications. As most orchards are usually installed on marginal lands where plants usually face severe drought, selecting plants that can better cope with water restriction is critical, and a better understanding of the tolerance mechanisms is required. Strawberry tree plants under drought follow a typical isohydric strategy, by limiting transpiration through stomata closure.
View Article and Find Full Text PDFThe role of salicylic acid (SA) on plant responses to biotic and abiotic stresses is well documented. However, the mechanism by which exogenous SA protects plants and its interactions with other phytohormones remains elusive. SA effect, both free and encapsulated (using silica and chitosan capsules), on development was studied.
View Article and Find Full Text PDFDrought, heat and high irradiance are abiotic stresses that negatively affect plant development and reduce crop productivity. The confluence of these three factors is common in nature, causing extreme situations for plants that compromise their viability. Drought and heat stresses increase the saturation of the photosystem reaction centers, increasing sensitivity to high irradiance.
View Article and Find Full Text PDFDiseases and climate change are major factors limiting grape productivity and fruit marketability. is a fungus of the family Botryosphaeriaceae that causes Botryosphaeria dieback of grapevine worldwide. Abiotic stress may change host vitality and impact susceptibility to the pathogen and/or change the pathogen's life cycle.
View Article and Find Full Text PDFHumans negatively influence Earth ecosystems and biodiversity causing global warming, climate change as well as man-made pollution. Recently, the number of different stress factors have increased, and when impacting simultaneously, the multiple stress conditions cause dramatic declines in plant and ecosystem health. Although much is known about how plants and ecosystems are affected by each individual stress, recent research efforts have diverted into how these biological systems respond to several of these stress conditions applied together.
View Article and Find Full Text PDF