The primary processes that occur following direct irradiation of bio-macromolecules by ionizing radiation determine the multiscale responses that lead to biomolecular lesions. The so-called physical stage loosely describes processes of energy deposition and molecular ionization/excitation but remains largely elusive. We propose a new approach based on first principles density functional theory to simulate energy deposition in large and heterogeneous biomolecules by high-energy-transfer particles.
View Article and Find Full Text PDFIn this work, we present the implementation of a variational density fitting methodology that uses iterative linear algebra for solving the associated system of linear equations. It is well known that most difficulties with this system arise from the fact that the coefficient matrix is in general ill-conditioned and, due to finite precision round-off errors, it may not be positive definite. The dimensionality, given by the number of auxiliary functions, also poses a challenge in terms of memory and time demand since the coefficient matrix is dense.
View Article and Find Full Text PDFdeMon2k is a readily available program specialized in Density Functional Theory (DFT) simulations within the framework of Auxiliary DFT. This article is intended as a tutorial-review of the capabilities of the program for molecular simulations involving ground and excited electronic states. The program implements an additive QM/MM (quantum mechanics/molecular mechanics) module relying either on non-polarizable or polarizable force fields.
View Article and Find Full Text PDFWe report original analyses of attosecond electron dynamics of molecules subject to collisions by high energy charged particles based on Real-Time Time-Dependent-Density-Functional-Theory simulations coupled to Topological Analyses of the Electron Localization Function (TA-TD-ELF). We investigate irradiation of water and guanine. TA-TD-ELF enables qualitative and quantitative characterizations of bond breaking and formation, of charge migration within topological basins, or of electron attachment to the colliding particle.
View Article and Find Full Text PDFThe density functional code deMon2k employs a fitted density throughout (Auxiliary Density Functional Theory), which offers a great speed advantage without sacrificing necessary accuracy. Powerful Quantum Mechanical/Molecular Mechanical (QM/MM) approaches are reviewed. Following an overview of the basic features of deMon2k that make it efficient while retaining accuracy, three QM/MM implementations are compared and contrasted.
View Article and Find Full Text PDFJ Chem Theory Comput
November 2012
In QM/MM studies with large MM regions, the calculation of electrostatic embedding integrals can become a computational bottleneck. To overcome this problem, an asymptotic expansion for nuclear attraction-type integrals is developed. As a result, the long-range interactions between the QM and MM atoms reduce to atom-centered multipole moment-like expansions.
View Article and Find Full Text PDF