MO and MO/C composites (M=V, Fe and W) were obtained by mineralization of cellulose with several metal chlorides. Cellulose was used both as a templating agent and as an oxygen and a carbon source. Soluble chloride molecules (VOCl and WCl) and a poorly soluble ionic chloride compound (FeCl) were chosen as metal oxide precursors.
View Article and Find Full Text PDFNanostructured TiO2 and TiO2@C nanocomposites were prepared directly from urea-impregnated cellulose by a simple reaction/diffusion process and evaluated as negative electrode materials for Li and Na batteries. By direct treatment with TiCl4 under anhydrous conditions, the urea impregnation of cellulose impacts both the TiO2 morphology and the carbon left by cellulose after pyrolysis. Hierarchical TiO2 structures with a flower-like morphology grown from-and-at the surface of the cellulose fibers are obtained without any directing agent.
View Article and Find Full Text PDFNanostructured TiO2 and TiO2@C nanocomposites were prepared by an original process combining biotemplating and mineralization of aerogels of nanofibrillated cellulose (NFC). A direct one step treatment of NFC with TiCl4 in strictly anhydrous conditions allows TiO2 formation at the outermost part of the nanofibrils while preserving their shape and size. Such TiO2@cellulose composites can be transformed into TiO2 nanotubes (TiO2-NT) by calcination in air at 600 and 900 °C, or into TiO2@C nanocomposites by pyrolysis in argon at 600 and 900 °C.
View Article and Find Full Text PDF