Recombinant Adeno-Associated Virus (rAAV) is considered as one of the most successful and widely used viral vectors for in vivo gene therapy. However, host immune responses to the vector and/or the transgene product remain a major hurdle to successful AAV gene transfer. In contrast to antivector adaptive immunity, the initiation of the innate immunity towards rAAV is still poorly understood but is directly dependent on the interaction between the viral vector and innate immune cells.
View Article and Find Full Text PDFAdeno-associated viral vectors (AAV) are efficient engineered tools for delivering genetic material into host cells. The commercialization of AAV-based drugs must be accompanied by the development of appropriate quality control (QC) assays. Given the potential risk of co-transfer of oncogenic or immunogenic sequences with therapeutic vectors, accurate methods to assess the level of residual DNA in AAV vector stocks are particularly important.
View Article and Find Full Text PDFRecombinant adeno-associated viral (rAAV) vectors have proven excellent tools for the treatment of many genetic diseases and other complex diseases. However, the illegitimate encapsidation of DNA contaminants within viral particles constitutes a major safety concern for rAAV-based therapies. Moreover, the development of rAAV vectors for early-phase clinical trials has revealed the limited accuracy of the analytical tools used to characterize these new and complex drugs.
View Article and Find Full Text PDF