Publications by authors named "Aurelien Dumetre"

The protozoan parasites , , and are major causes of waterborne and foodborne diseases worldwide. The assessment of their removal or inactivation during water treatment and food processing remains challenging, partly because research on these parasites is hindered by various economical, ethical, methodological, and biological constraints. To address public health concerns and gain new knowledge, researchers are increasingly seeking alternatives to the use of such pathogenic parasites.

View Article and Find Full Text PDF

A series of laboratory experiments were conducted to study the fate and transport of Toxoplasma gondii oocysts in soils as a function of soil physicochemical properties and soil water chemistry properties. Soil columns were homogeneously packed with loamy sand soils (Lewiston and Greenson series) and sandy loam soils (Sparta and Gilford series), and subject to hydrologic conditions characterized by the absence and presence of an anionic surfactant-Aerosol 22 in the artificial rainfall. Quantitative polymerase chain reaction (qPCR) was utilized for the detection and enumeration of oocysts in soil leachates to evaluate their breakthrough and in soil matrices to examine their spatial distribution.

View Article and Find Full Text PDF

Toxoplasma gondii oocysts are responsible for food- and water-borne infections in humans worldwide. They are resistant to common chemical disinfectants, including chlorinated products, presumably due to the structure and molecular nature of the oocyst wall but also the sporocyst wall. In this study, we used fluorescence microscopy and transmission electron microscopy to characterise the structure of both the oocyst and sporocyst walls, exposed to household bleach.

View Article and Find Full Text PDF

Oocysts are the environmentally resistant stage of the protozoan parasite . They are responsible for foodborne infections in humans and animals worldwide. Infectious oocysts contain sporozoites that have to exit the sporocyst and oocyst walls to initiate replication of the parasite within the host tissues.

View Article and Find Full Text PDF
Article Synopsis
  • Zoonotic protozoan parasites like Toxoplasma gondii can affect a wide range of hosts, including humans and animals, and are resilient thanks to their oocyst stage that allows for global spread and contamination of food and water.
  • The oocysts are particularly tough, enabling them to survive in various environments and persist in foods such as shellfish and fresh produce, which complicates infection control efforts.
  • The review discusses how these oocysts infect hosts and highlights potential strategies for reducing exposure to Toxoplasma gondii, emphasizing the need for further research to address its impact on health.
View Article and Find Full Text PDF

is a ubiquitous foodborne protozoan that can infect humans at low dose and displays different prevalences among countries in the world. Ingestion of food or water contaminated with small amounts of oocysts may result in human infection. However, there are no regulations for monitoring oocysts in food, mainly because of a lack of standardized methods to detect them.

View Article and Find Full Text PDF

Information on the viability of Toxoplasma gondii oocysts is crucial to establish the public health significance of this environmental transmission stage that can contaminate water and foods. Interest for molecular-based methods to assess viability is growing and the aim of our study was to assess, for the first time, a propidium monoazide (PMA)-qPCR approach to determine the viability of T. gondii oocysts.

View Article and Find Full Text PDF

is a coccidian parasite with the cat as its definitive host but any warm-blooded animal, including humans, may act as intermediate hosts. It has a worldwide distribution where it may cause acute and chronic toxoplasmosis. Infection can result from ingestion either of tissue cysts in infected meat of intermediate hosts or oocysts found in cat faeces via contaminated water or food.

View Article and Find Full Text PDF

Giardia duodenalis, Cryptosporidium spp. and Toxoplasma gondii are protozoan parasites that have been highlighted as emerging foodborne pathogens by the Food and Agriculture Organization of the United Nations and the World Health Organization. According to the European Food Safety Authority, 4786 foodborne and waterborne outbreaks were reported in Europe in 2016, of which 0.

View Article and Find Full Text PDF

Toxoplasma gondii is a common parasite of humans and animals, which is transmitted via oocysts in cat faeces or tissue cysts in contaminated meat. The robust oocyst and sporocyst walls protect the infective sporozoites from deleterious external attacks including disinfectants. Upon oocyst acquisition, these walls lose their integrity to let the sporozoites excyst and invade host cells following a process that remains poorly understood.

View Article and Find Full Text PDF

Toxoplasma gondii, Cryptosporidium spp. and Giardia intestinalis are emerging pathogen parasites in the food domain. However, without standardized methods for their detection in food matrices, parasitic foodborne outbreaks remain neglected.

View Article and Find Full Text PDF

A preliminary in vitro screening of compounds belonging to various chemical families from our library revealed the thieno[3,2-d]pyrimidin-4(3H)-one scaffold displayed a promising profile against Plasmodium falciparum. Then, 120 new derivatives were synthesized and evaluated in vitro; compared to drug references, 40 showed good activity toward chloroquine sensitive (IC50 35-344 nM) and resistant (IC50 45-800 nM) P. falciparum strains.

View Article and Find Full Text PDF

We validated a new method, based on luciferine/luciferase bioluminescence, for drug screening on promastigotes of different Leishmania species. Results obtained with this new, rapid, reproducible, and reliable method are in good accordance with results obtained by the conventional MTT assay. This bioluminescence assay has a lower detection limit.

View Article and Find Full Text PDF

Foodborne infections are of public health importance and deeply impact the global economy. Consumption of bivalve mollusks generates risk for humans because these filtering aquatic invertebrates often concentrate microbial pathogens from their environment. Among them, Giardia, Cryptosporidium, and Toxoplasma are major parasites of humans and animals that may retain their infectivity in raw or undercooked mollusks.

View Article and Find Full Text PDF

The ability of microorganisms to survive under extreme conditions is closely related to the physicochemical properties of their wall. In the ubiquitous protozoan parasite Toxoplasma gondii, the oocyst stage possesses a bilayered wall that protects the dormant but potentially infective parasites from harsh environmental conditions until their ingestion by the host. None of the common disinfectants are effective in killing the parasite because the oocyst wall acts as a primary barrier to physical and chemical attacks.

View Article and Find Full Text PDF

Plasmodium falciparum has a specific metabolism of particular interest because several of its features, with respect to the host human ones, are potential pharmacological targets. Such features have been more intensely investigated since 2002, thanks to the full sequencing of the genome of P. falciparum.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: Stephania rotunda Lour. (Menispermaceae) is a creeper growing in many countries of Asia and commonly found in the mountainous areas of Cambodia. As a folk medicine, it has been mainly used for the treatment of fever and malaria.

View Article and Find Full Text PDF

We report herein a simple and efficient two-step synthetic approach to new 2-trichloromethylquinazolines possessing a variously substituted sulfonamide group at position 4 used to prepare new quinazolines with antiparasitic properties. Thus, an original series of 20 derivatives was synthesized, which proved to be less-toxic than previously synthesized hits on the human HepG2 cell line, but did not display significant antiplasmodial activity. A brief Structure-Activity Relationship (SAR) evaluation shows that a more restricted conformational freedom is probably necessary for providing antiplasmodial activity.

View Article and Find Full Text PDF

A series of nitrated 2-substituted-quinolines was synthesized and evaluated in vitro toward Leishmania donovani promastigotes. In parallel, the in vitro cytotoxicity of these molecules was assessed on the murine J774 and human HepG2 cell lines. Thus, a very promising antileishmanial hit molecule was identified (compound 21), displaying an IC(50) value of 6.

View Article and Find Full Text PDF

Toxoplasma gondii oocysts spread in the environment are an important source of toxoplasmosis for humans and animal species. Although the life expectancy of oocysts has been studied through the infectivity of inoculated soil samples, the survival dynamics of oocysts in the environment are poorly documented. The aim of this study was to quantify oocyst viability in soil over time under two rain conditions.

View Article and Find Full Text PDF

Stephania rotunda (Menispermaceae), a creeper commonly found in the mountainous areas of Cambodia, has been mainly used for the treatment of fever and malaria. Thus, the aim of this study is to investigate the chemical composition and antiplasmodial activity of different samples of S. rotunda and compare their antiplasmodial activity with their alkaloid content.

View Article and Find Full Text PDF

The synthesis of β-carbolines and their in vitro antiplasmodial and antileishmanial activities were described herein. These molecules have also been studied concerning their in vitro cytotoxicity toward the human cell line THP1, in order to calculate their respective selectivity indexes (SI). Among the 20 tested molecules, four exhibited significant antiplasmodial activity on the W2 multi-resistant Plasmodium falciparum strain (0.

View Article and Find Full Text PDF

The protozoan parasites Giardia duodenalis, Cryptosporidium spp., and Toxoplasma gondii are pathogens that are resistant to a number of environmental factors and pose significant risks to public health worldwide. Their environmental transmission is closely governed by the physicochemical properties of their cysts (Giardia) and oocysts (Cryptosporidium and Toxoplasma), allowing their transport, retention, and survival for months in water, soil, vegetables, and mollusks, which are the main reservoirs for human infection.

View Article and Find Full Text PDF

A series of original quinazolines bearing a 4-thiophenoxy and a 2-trichloromethyl group was synthesized in a convenient and efficient way and was evaluated toward its in vitro antiplasmodial potential. The series revealed global good activity against the K1-multi-resistant Plasmodium falciparum strain, especially with hit compound 5 (IC(50)=0.9 μM), in comparison with chloroquine and doxycycline chosen as reference-drugs.

View Article and Find Full Text PDF

Toxoplasmosis is a world-wide infection caused by Toxoplasma gondii. Oocysts disseminated in the environment by infected cats provide a major source of infection for humans and intermediate hosts. The level of soil contamination and the dynamics of this contamination are mostly unknown due to the lack of sensitivity of detection method.

View Article and Find Full Text PDF