This study addresses the challenges associated with vinyl cation generation, a process that traditionally requires quite specific counterions. Described herein is a novel intramolecular vinylation of arenes catalyzed by aluminum(III) chloride, utilizing practical conditions and readily available vinyl triflates derived from 2-aceto-3-arylpropionates. Comprehensive experimental data support diverse carbocycle synthesis, exemplified by indenes and higher analogues.
View Article and Find Full Text PDFAn overlooked pericyclic reaction between allyl alcohols and alkenes to form carbonyl compounds is analyzed. It combines the characteristic features of the Alder-ene reaction and of the oxy-Cope rearrangement. This oxy-ene reaction could be involved in biosynthetic pathways.
View Article and Find Full Text PDFArylidene acetals are widely used protecting groups, because of not only the high regioselectivity of their introduction but also the possibility of performing further regioselective reductive opening in the presence of a hydride donor and an acid catalyst. In this context, the EtSiH/PhBCl system presents several advantages: silanes are efficient, environmentally benign, and user-friendly hydride donors, while PhBCl opens the way to unique regioselectivity with regard to all other Brønsted or Lewis acids used with silanes. This system has been extensively used by several groups, and we have demonstrated its high regioselectivity in the reductive opening of 4,6- and 2,4---methoxybenzylidene moieties in protected disaccharides.
View Article and Find Full Text PDFThe concept of alkynophilicity is revisited with group 13 MX metal salts (M = In, Ga, Al, B; X = Cl, OTf) using M06-2X/6-31+G(d,p) calculations. This study aims at answering why some of these salts show reactivity toward enynes that is similar to that observed with late-transition-metal complexes, notably Au(I) species, and why some of them are inactive. For this purpose, the mechanism of the skeletal reorganization of 1,6-enynes into 1-vinylcyclopentenes has been computed, including monomeric ("standard") and dimeric (superelectrophilic) activation.
View Article and Find Full Text PDFThe direct and chemoselective N-transacylation of peracetylated chitooligosaccharides (COSs), readily obtained from chitin, to give per-N-trifluoroacetyl derivatives offers an attractive route to size-defined COSs and derived glycoconjugates. It involves the use of various acceptor building blocks and trifluoromethyl oxazoline dimer donors prepared with efficiency and highly reactive in 1,2-trans glycosylation reactions. This method was applied to the preparation of the important symbiotic glycolipids which are highly active on plants and to the TMG-chitotriomycin, a potent and specific inhibitor of insect, fungal, and bacterial N-acetylglucosaminidases.
View Article and Find Full Text PDFA general and practical N-iodosuccinimide (NIS)-promoted aza-Friedel-Crafts reaction of various aromatic nucleophiles with N-acylimines generated in situ from α-amidosulfides to give a rapid access to highly functionalized amines is described. The newly developed methodology is very mild, fast, efficient, and complementary.
View Article and Find Full Text PDFMetal-free chiral phosphoric acids and chiral calcium phosphates both catalyze highly enantio- and diastereoselective electrophilic α-bromination of enecarbamates to provide an atom-economical synthesis of enantioenriched vicinal haloamines. Either enantiomer can be formed in good yield with excellent diastereo- and enantioselectivity simply by switching the catalyst from a phosphoric acid to its calcium salt.
View Article and Find Full Text PDFSc(III)-doped solids based on zeolite materials have been investigated for the first time as catalysts in organic synthesis. Sc(III)-USY zeolite proved to be a novel and very efficient heterogeneous catalyst for the Mukaiyama aldol reaction. This easy-to-prepare catalyst exhibited wide scope and compatibility with functional groups and is very simple to use, easy to remove (by simple filtration), and is recyclable (up to three times without loss of activity).
View Article and Find Full Text PDFFor the first time, copper(I)-exchanged zeolites were developed as catalysts in organic synthesis. These solid materials proved to be versatile and efficient heterogeneous, ligand-free catalytic systems for the Huisgen [3+2] cycloaddition. These cheap and easy-to-prepare catalysts exhibited a wide scope and compatibility with functional groups.
View Article and Find Full Text PDFA neamine dimer designed to bind to a specific sequence of HIV-1 RNA has been synthesized. Starting from neomycin B (1), a five-step synthesis efficiently provided a key protected neamine monomer 6 (28%). From the latter, coupling reactions with activated diacids gave dimers.
View Article and Find Full Text PDF