Publications by authors named "Aurelie Wender"

We report molecular simulations of oil-water liquid-liquid interfaces by using atomistic and coarse grained (CG) MARTINI force fields. We also apply the electronic continuum (EC) model to the MARTINI force field for the calculation of the interfacial tension of oil/water-salt systems. In a first step, we propose to calculate the interfacial tensions using thermodynamic and mechanical definitions of hydrocarbon-water interfacial systems modified by the addition of salts and alcohol.

View Article and Find Full Text PDF

Molecular simulations using Drude oscillator polarizable and nonpolarizable models for water and ions are carried out to predict the dependence of the surface tension on salt concentration. The polarizable water and ion models are based only on the classical Drude oscillators. The temperature dependence of the surface tension of water is examined for different water models.

View Article and Find Full Text PDF

We report Monte Carlo simulations of the liquid-vapor interface of SO(2), O(2), N(2), and Ar to reproduce the dependence of the surface tension with the temperature. Whereas the coexisting densities, critical temperature, density, and pressure are very well reproduced by the two-phase simulations showing the same accuracy as the calculations performed using the Gibbs ensemble Monte Carlo technique (GEMC), the performance of the prediction of the variation of the surface tension with the temperature depends on the magnitude of the electrostatic and repulsive-dispersive interactions. The surface tension of SO(2) is very well reproduced, whereas the prediction of this property is less satisfactory for O(2) and N(2), for which the average intermolecular electrostatic interactions are several orders smaller than the dispersion interactions.

View Article and Find Full Text PDF

Post-combustion Carbon Capture and Storage technology (CCS) is viewed as an efficient solution to reduce CO(2) emissions of coal-fired power stations. In CCS, an aqueous amine solution is commonly used as a solvent to selectively capture CO(2) from the flue gas. However, this process generates additional costs, mostly from the reboiler heat duty required to release the carbon dioxide from the loaded solvent solution.

View Article and Find Full Text PDF