The SoyaGen project was a collaborative endeavor involving Canadian soybean researchers and breeders from academia and the private sector as well as international collaborators. Its aims were to develop genomics-derived solutions to real-world challenges faced by breeders. Based on the needs expressed by the stakeholders, the research efforts were focused on maximizing realized yield through optimization of maturity and improved disease resistance.
View Article and Find Full Text PDFA gene-centric approach for haplotype definition was developed and implemented in R. The tool allows for allelic characterization at given loci in germplasm collections. Allelic status at four maturity genes is predicted on the basis of marker genotyping data.
View Article and Find Full Text PDFNext-generation sequencing (NGS) and bioinformatics tools have greatly facilitated the characterization of nucleotide variation; nonetheless, an exhaustive description of both SNP haplotype diversity and of structural variation remains elusive in most species. In this study, we sequenced a representative set of 102 short-season soya beans and achieved an extensive coverage of both nucleotide diversity and structural variation (SV). We called close to 5M sequence variants (SNPs, MNPs and indels) and noticed that the number of unique haplotypes had plateaued within this set of germplasm (1.
View Article and Find Full Text PDFHighly parallel SNP genotyping platforms have been developed for some important crop species, but these platforms typically carry a high cost per sample for first-time or small-scale users. In contrast, recently developed genotyping by sequencing (GBS) approaches offer a highly cost effective alternative for simultaneous SNP discovery and genotyping. In the present investigation, we have explored the use of GBS in soybean.
View Article and Find Full Text PDF