Despite the existence of the prophylactic Bacille Calmette-Guérin (BCG) vaccine, infection by Mycobacterium tuberculosis (Mtb) remains a major public health issue causing up to 1.8 million annual deaths worldwide. Increasing prevalence of Mtb strains resistant to antibiotics represents an urgent threat for global health that has prompted a search for alternative treatment regimens not subject to development of resistance.
View Article and Find Full Text PDFBacille Calmette-Guérin (BCG) vaccination of new born babies can protect children against tuberculosis (TB), but fails to protect adults consistently against pulmonary TB underlying the urgent need to develop novel TB vaccines. Majority of first generation TB vaccine candidates have relied on a very limited number of antigens typically belonging to the active phase of infection. We have designed a multi-antigenic and multiphasic vaccine, based on the Modified Vaccinia Ankara virus (MVA).
View Article and Find Full Text PDFIL12RB1 is a human gene that is important for resistance to Mycobacterium tuberculosis infection. IL12RB1 is expressed by multiple leukocyte lineages, and encodes a type I transmembrane protein (IL12Rβ1) that associates with IL12p40 and promotes the development of host-protective T(H)1 cells. Recently, we observed that il12rb1—the mouse homolog of IL12RB1—is alternatively spliced by leukocytes to produce a second isoform (IL12Rβ1ΔTM) that has biological properties distinct from IL12Rβ1.
View Article and Find Full Text PDFInnate immune recognition is the first line of host defense against invading microorganisms. It is a based on the detection, by pattern recognition receptors (PRRs), of invariant molecular signatures that are unique to microorganisms. TLR2 is a PRR that plays a major role in the detection of Gram-positive bacteria by recognizing cell envelope lipid-linked polymers, also called macroamphiphiles, such as lipoproteins, lipoteichoic acids and mycobacterial lipoglycans.
View Article and Find Full Text PDFThe cell envelope of Mycobacterium tuberculosis, the causative agent of tuberculosis in humans, contains lipids with unusual structures. These lipids play a key role in both virulence and resistance to the various hostile environments encountered by the bacteria during infection. They are synthesized by complex enzymatic systems, including type-I polyketide synthases and type-I and -II fatty acid synthases, which require a post-translational modification to become active.
View Article and Find Full Text PDFInnate immune system is the first line of host defense against invading microorganisms. It relies on a limited number of germline-encoded pattern recognition receptors that recognize conserved molecular structures of microbes, referred to as pathogen-/microbe-associated molecular patterns (PAMPs/MAMPs). Bacterial cell wall macroamphiphiles, namely Gram-negative bacteria lipopolysaccharide (LPS), Gram-positive bacteria lipoteichoic acid (LTA), lipoproteins and mycobacterial lipoglycans, are important molecules for the physiology of bacteria and evidently meet PAMP/MAMP criteria.
View Article and Find Full Text PDFInnate immune recognition is based on the detection, by pattern recognition receptors (PRRs), of molecular structures that are unique to microorganisms. Lipoglycans are macromolecules specific to the cell envelope of mycobacteria and related genera. They have been described to be ligands, as purified molecules, of several PRRs, including the C-type lectins Mannose Receptor and DC-SIGN, as well as TLR2.
View Article and Find Full Text PDFGram positive bacteria produce cell envelope macroamphiphile glycopolymers, i.e. lipoteichoic acids or lipoglycans, whose functions and biosynthesis are not yet fully understood.
View Article and Find Full Text PDFChanges in the cell envelope composition of mycobacteria cause major changes in cytokine profiles of infected antigen presenting cells. We describe here the modulation of inflammatory responses by Mycobacterium abscessus, an emerging pathogen in cystic fibrosis. M.
View Article and Find Full Text PDFThe species-specific phenolic glycolipid 1 (PGL-1) is suspected to play a critical role in the pathogenesis of leprosy, a chronic disease of the skin and peripheral nerves caused by Mycobacterium leprae. Based on studies using the purified compound, PGL-1 was proposed to mediate the tropism of M. leprae for the nervous system and to modulate host immune responses.
View Article and Find Full Text PDFTHAP1 is a sequence-specific DNA binding factor that regulates cell proliferation through modulation of target genes such as the cell cycle-specific gene RRM1. Mutations in the THAP1 DNA binding domain, an atypical zinc finger (THAP-zf), have recently been found to cause DYT6 dystonia, a neurological disease characterized by twisting movements and abnormal postures. In this study, we report that THAP1 shares sequence characteristics, in vivo expression patterns and protein partners with THAP3, another THAP-zf protein.
View Article and Find Full Text PDFTLR2 is a pattern-recognition receptor that is activated by a large variety of conserved microbial components, including lipoproteins, lipoteichoic acids, and peptidoglycan. Lipoglycans are TLR2 agonists found in some genera of the phylogenetic order Actinomycetales, including Mycobacterium. They are built from a mannosyl-phosphatidyl-myo-inositol anchor attached to a (alpha1-->6)-linked d-mannopyranosyl chain whose units can be substituted by d-mannopyranosyl and/or d-arabinofuranosyl units.
View Article and Find Full Text PDF