Publications by authors named "Aurelie Munger"

Studies have reported the potential of protease inhibitors to engineer insect resistance in transgenic plants but the general usefulness of this approach in crop protection still remains to be established. Insects have evolved strategies to cope with dietary protease inhibitors, such as the use of proteases recalcitrant to inhibition, that often make the selection of effective inhibitors very challenging. Here, we used a functional proteomics approach for the 'capture' of Cys protease targets in crude protein extracts as a tool to identify promising cystatins for plant improvement.

View Article and Find Full Text PDF

Background: Recent studies have reported agronomically useful ectopic effects for recombinant protease inhibitors expressed in leaves of transgenic plants, including improved tolerance to abiotic stress conditions and partial resistance to necrotrophic pathogens. Here we assessed the effects of these proteins on the post-dormancy sprouting of storage organs, using as a model potato tubers expressing cysteine protease inhibitors of the cystatin protein superfamily.

Results: Sprout emergence and distribution, soluble proteins, starch and soluble sugars were monitored in tubers of cereal cystatin-expressing clones stored for several months at 4 °C.

View Article and Find Full Text PDF

Background: Studies reported unintended pleiotropic effects for a number of pesticidal proteins ectopically expressed in transgenic crops, but the nature and significance of such effects in planta remain poorly understood. Here we assessed the effects of corn cystatin II (CCII), a potent inhibitor of C1A cysteine (Cys) proteases considered for insect and pathogen control, on the leaf proteome and pathogen resistance status of potato lines constitutively expressing this protein.

Results: The leaf proteome of lines accumulating CCII at different levels was resolved by 2-dimensional gel electrophoresis and compared with the leaf proteome of a control (parental) line.

View Article and Find Full Text PDF

Protease inhibitors are a promising complement to Bt toxins for the development of insect-resistant transgenic crops, but their limited specificity against proteolytic enzymes and the ubiquity of protease-dependent processes in living organisms raise questions about their eventual non-target effects in agroecosystems. After a brief overview of the main factors driving the impacts of insect-resistant transgenic crops on non-target organisms, the possible effects of protease inhibitors are discussed from a multitrophic perspective, taking into account not only the target herbivore proteases but also the proteases of other organisms found along the trophic chain, including the plant itself. Major progress has been achieved in recent years towards the design of highly potent broad-spectrum inhibitors and the field deployment of protease inhibitor-expressing transgenic plants resistant to major herbivore pests.

View Article and Find Full Text PDF