Publications by authors named "Aurelie Louit"

Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is an early-onset neurodegenerative disease mainly characterized by spasticity in the lower limbs and poor muscle control. The disease is caused by mutations in the gene leading in most cases to a loss of function of the sacsin protein, which is highly expressed in motor neurons and Purkinje cells. To investigate the impact of the mutated sacsin protein in these cells , induced pluripotent stem cell- (iPSC-) derived motor neurons and iPSC-derived Purkinje cells were generated from three ARSACS patients.

View Article and Find Full Text PDF

In the peripheral nervous system, Schwann cells (SCs) play a crucial role in axonal growth, metabolic support of neurons, and the production of myelin sheaths. Expansion of SCs after extraction from human or animal nerves is a long and often low-yielding process. We established a rapid cell culture method using a defined serum-free medium to differentiate human induced pluripotent stem cells (iPSCs) into SCs in only 21 days.

View Article and Find Full Text PDF

The study of neurodegenerative diseases (such as Alzheimer's disease, Parkinson's disease, Huntington's disease, or amyotrophic lateral sclerosis) is very complex due to the difficulty in investigating the cellular dynamics within nervous tissue. Despite numerous advances in the in vivo study of these diseases, the use of in vitro analyses is proving to be a valuable tool to better understand the mechanisms implicated in these diseases. Although neural cells remain difficult to obtain from patient tissues, access to induced multipotent stem cell production now makes it possible to generate virtually all neural cells involved in these diseases (from neurons to glial cells).

View Article and Find Full Text PDF

Amyotrophic Lateral Sclerosis (ALS) is a devastating neurodegenerative disease affecting upper and lower motor neurons (MNs). To investigate whether Schwann cells could be involved in the disease pathogenesis, we developed a tissue-engineered three-dimensional (3D) in vitro model that combined MNs cocultured with astrocytes and microglia seeded on top of a collagen sponge populated with epineurium fibroblasts to enable 3D axonal migration. C2C12 myoblasts were seeded underneath the sponge in the presence or absence of Schwann cells.

View Article and Find Full Text PDF