The consolidation of recent memories depends on memory replays, also called ripples, generated within the hippocampus during slow-wave sleep, and whose inactivation leads to memory impairment. For now, the mobilisation, localisation and importance of synaptic plasticity events associated to ripples are largely unknown. To tackle this question, we used cell surface AMPAR immobilisation to block post-synaptic LTP within the hippocampal region of male mice during a spatial memory task, and show that: 1- hippocampal synaptic plasticity is engaged during consolidation, but is dispensable during encoding or retrieval.
View Article and Find Full Text PDFRegulation of synaptic neurotransmitter receptor content is a fundamental mechanism for tuning synaptic efficacy during experience-dependent plasticity and behavioral adaptation. However, experimental approaches to track and modify receptor movements in integrated experimental systems are limited. Exploiting AMPA-type glutamate receptors (AMPARs) as a model, we generated a knock-in mouse expressing the biotin acceptor peptide (AP) tag on the GluA2 extracellular N-terminal.
View Article and Find Full Text PDFThe behavioral response to a sensory stimulus may depend on both learned and innate neuronal representations. How these circuits interact to produce appropriate behavior is unknown. In Drosophila, the lateral horn (LH) and mushroom body (MB) are thought to mediate innate and learned olfactory behavior, respectively, although LH function has not been tested directly.
View Article and Find Full Text PDFNon-caloric artificial sweeteners (NAS) are widely used in modern human food, raising the question about their health impact. Here we have asked whether NAS consumption is a neutral experience at neural and behavioral level, or if NAS can be interpreted and remembered as negative experience. We used behavioral and imaging approaches to demonstrate that Drosophila melanogaster learn the non-caloric property of NAS through post-ingestion process.
View Article and Find Full Text PDFUnlabelled: Neprilysins are type II metalloproteinases known to degrade and inactivate a number of small peptides. Neprilysins in particular are the major amyloid-β peptide-degrading enzymes. In mouse models of Alzheimer's disease, neprilysin overexpression improves learning and memory deficits, whereas neprilysin deficiency aggravates the behavioral phenotypes.
View Article and Find Full Text PDFThe amyloid precursor protein (APP) plays a central role in Alzheimer's disease (AD). APP can undergo two exclusive proteolytic pathways: cleavage by the α-secretase initiates the non-amyloidogenic pathway while cleavage by the β-secretase initiates the amyloidogenic pathway that leads, after a second cleavage by the γ-secretase, to amyloid-β (Aβ) peptides that can form toxic extracellular deposits, a hallmark of AD. The initial events leading to AD are still unknown.
View Article and Find Full Text PDFA central goal of neuroscience is to understand how neural circuits encode memory and guide behavior changes. Many of the molecular mechanisms underlying memory are conserved from flies to mammals, and Drosophila has been used extensively to study memory processes. To identify new genes involved in long-term memory, we screened Drosophila enhancer-trap P(Gal4) lines showing Gal4 expression in the mushroom bodies, a specialized brain structure involved in olfactory memory.
View Article and Find Full Text PDFCytokine signaling through the JAK/STAT pathway regulates multiple cellular responses, including cell survival, differentiation, and motility. Although significant attention has been focused on the role of cytokines during inflammation and immunity, it has become clear that they are also implicated in normal brain function. However, because of the large number of different genes encoding cytokines and their receptors in mammals, the precise role of cytokines in brain physiology has been difficult to decipher.
View Article and Find Full Text PDFThe amyloid precursor protein (APP) plays an important role in Alzheimer's disease (AD), a progressive neurodegenerative pathology that first manifests as a decline of memory. While the main hypothesis for AD pathology centers on the proteolytic processing of APP, very little is known about the physiological function of the APP protein in the adult brain. Likewise, whether APP loss of function contributes to AD remains unclear.
View Article and Find Full Text PDFBackground: Psychostimulants and opiates trigger similar enduring neuroadaptations within the reward circuitry thought to underlie addiction. Transcription factors are key to mediating these enduring behavioral alterations. The facilitation of these maladaptive changes by glucocorticoid hormones suggests that the glucocorticoid receptor (GR), a transcription factor involved in the stress response, could be a common mediator of responses to pharmacologically distinct classes of abused drugs.
View Article and Find Full Text PDFMerlin is the product of the Nf2 tumor-suppressor gene, and inactivation of Nf2 leads to the development of neural tumors such as schwannomas and meningiomas in humans and mice. Merlin is a member of the ERM (ezrin, radixin and moesin) family of proteins that function as organizers of the actin cytoskeleton. Merlin structure is thought to be similar to that of the ERM proteins, and is held in a closed clamp conformation via intramolecular interactions of its N-terminal FERM (four-point-one, ERM) domain with an alpha-helical C-terminal domain.
View Article and Find Full Text PDF