Disrupting transmission of Borrelia burgdorferi sensu lato complex (B. burgdorferi) from infected ticks to humans is one strategy to prevent the significant morbidity from Lyme disease. We have previously shown that an anti-OspA human mAb, 2217, prevents transmission of B.
View Article and Find Full Text PDFA growing global health concern, Lyme disease has become the most common tick-borne disease in the United States and Europe. Caused by the bacterial spirochete sensu lato (sl), this disease can be debilitating if not treated promptly. Because diagnosis is challenging, prevention remains a priority; however, a previously licensed vaccine is no longer available to the public.
View Article and Find Full Text PDFBorrelia burgdorferi, the causative agent of Lyme disease in humans, is maintained in a complex biphasic life cycle, which alternates between tick and vertebrate hosts. To successfully survive and complete its enzootic cycle, B. burgdorferi adapts to diverse hosts by regulating genes required for survival in specific environments.
View Article and Find Full Text PDFUnderstanding the mechanism of pathogen transmission is essential for the development of strategies to reduce arthropod-borne diseases. The pharmaco- and immunomodulatory properties of insect and acarine saliva play an essential role in the efficiency of pathogen transmission. The skin as the site where arthropod saliva and pathogens are inoculated - represents the key interface in vector-borne diseases.
View Article and Find Full Text PDFWe recently developed anti-OspA human immunoglobulin G1 monoclonal antibodies (HuMAbs) that are effective in preventing Borrelia transmission from ticks in a murine model. Here, we investigated a novel approach of DNA-mediated gene transfer of HuMAbs that provide protection against Lyme disease. Plasmid DNA-encoded anti-OspA HuMAbs inoculated in mice achieved a serum antibody concentration of >6 μg/mL.
View Article and Find Full Text PDFThe incidence of Lyme disease has continued to rise despite attempts to control its spread. Vaccination of zoonotic reservoirs of human pathogens has been successfully used to decrease the incidence of rabies in raccoons and foxes. We have previously reported on the efficacy of a vaccinia virus vectored vaccine to reduce carriage of Borrelia burgdorferi in reservoir mice and ticks.
View Article and Find Full Text PDFBackground: Tick transmission of Borrelia spirochetes to humans results in significant morbidity from Lyme disease worldwide. Serum concentrations of antibodies against outer surface protein A (OspA) were shown to correlate with protection from infection with Borrelia burgdorferi, the primary cause of Lyme disease in the United States.
Methods: Mice transgenic for human immunoglobulin genes were immunized with OspA from B.
Innate immune engagement results in the activation of host defenses that produce microbe-specific inflammatory responses. A long-standing interest in the field of innate immunity is to understand how varied host responses are generated through the signaling of just a limited number of receptors. Recently, intracellular trafficking and compartmental partitioning have been identified as mechanisms that provide signaling specificity for receptors by regulating signaling platform assembly.
View Article and Find Full Text PDFLyme disease is a multisystemic disorder caused by B. burgdorferi sl. The molecular basis for specific organ involvement is poorly understood.
View Article and Find Full Text PDFFront Cell Infect Microbiol
July 2015
Lyme disease is a long-term infection whose most severe pathology is characterized by inflammatory arthritis of the lower bearing joints, carditis, and neuropathy. The inflammatory cascades are initiated through the early recognition of invading Borrelia burgdorferi spirochetes by cells of the innate immune response, such as neutrophils and macrophage. B.
View Article and Find Full Text PDFThe mechanisms behind flares of human autoimmune diseases in general, and of systemic lupus in particular, are poorly understood. The present scenario proposes that predisposing gene defects favour clinical flares under the influence of external stimuli. Here, we show that Carabin is low in B cells of (NZB × NZW) F1 mice (murine SLE model) long before the disease onset, and is low in B cells of lupus patients during the inactive phases of the disease.
View Article and Find Full Text PDFIn Lyme borreliosis, the skin is the key site of bacterial inoculation by the infected tick, and of cutaneous manifestations, erythema migrans and acrodermatitis chronica atrophicans. We explored the role of fibroblasts, the resident cells of the dermis, in the development of the disease. Using microarray experiments, we compared the inflammation of fibroblasts induced by three strains of Borrelia burgdorferi sensu stricto isolated from different environments and stages of Lyme disease: N40 (tick), Pbre (erythema migrans) and 1408 (acrodermatitis chronica atrophicans).
View Article and Find Full Text PDFHuman granulocytic anaplasmosis (HGA) is a tick-borne infection characterised by an acute, nonspecific febrile illness. To date, few clinical cases have been supported by both a positive polymerase chain reaction (PCR) assay and subsequent seroconversion against Anaplasma phagocytophilum antigen all over Europe. We report here 3 consecutive cases of HGA that occurred during the summer of 2009 which fulfilled the epidemiologic, clinical, and biological criteria for HGA.
View Article and Find Full Text PDFVector Borne Zoonotic Dis
October 2011
Lyme borreliosis is an arthropod-borne disease transmitted by the Ixodes tick. This spirochetal infection is first characterized by a local cutaneous inflammation, the erythema migrans. The skin constitutes a key interface in the development of the disease.
View Article and Find Full Text PDFTick saliva has potent immunomodulatory properties. In arthropod-borne diseases, this effect is largely used by microorganisms to increase their pathogenicity and to evade host immune responses. We show that in Lyme borreliosis, tick salivary gland extract and a tick saliva protein, Salp15, inhibit in vitro keratinocyte inflammation induced by Borrelia burgdorferi sensu stricto or by the major outer surface lipoprotein of Borrelia, OspC.
View Article and Find Full Text PDF