The nonlinear refractive indices (n) of a selection of bulk (LiBO, KTiOAsO, MgO:LiNbO, LiGaS, ZnSe) and liquid (E7, MLC2132) crystals are measured at 1030 nm in the sub-picosecond regime (200 fs) by nonlinear chirped interferometry. The reported values provide key parameters for the design of near- to mid-infrared parametric sources, as well as all-optical delay lines.
View Article and Find Full Text PDFWe present a machine learning approach to program the light phase modulation function of an innovative thermo-optically addressed, liquid-crystal based, spatial light modulator (TOA-SLM). The designed neural network is trained with a little amount of experimental data and is enabled to efficiently generate prescribed low-order spatial phase distortions. These results demonstrate the potential of neural network-driven TOA-SLM technology for ultrabroadband and large aperture phase modulation, from adaptive optics to ultrafast pulse shaping.
View Article and Find Full Text PDFThe stability of the phase difference between two white-light continua, generated from the same 180-fs pulses at ≃1035 nm, is assessed by a modified Bellini-Hänsch interferometer. Mutual spectral phase stability is studied and quantified as a function of several parameters: pulse energy, position of the nonlinear crystal with respect to the beam waist and interaction length. Our results show that intrapulse decoherence may significantly contribute to the measured CEP noise floor.
View Article and Find Full Text PDFBiological systems inspire the design of multifunctional materials and devices. However, current synthetic replicas rarely capture the range of structural complexity observed in natural materials. Prior to the definition of a biomimetic design, a dual investigation with a common set of criteria for comparing the biological material and the replica is required.
View Article and Find Full Text PDFThe development of ultra-intense and ultra-short light sources is currently a subject of intense research driven by the discovery of novel phenomena in the realm of relativistic optics, such as the production of ultrafast energetic particle and radiation beams for applications. It has been a long-standing challenge to unite two hitherto distinct classes of light sources: those achieving relativistic intensity and those with pulse durations approaching a single light cycle. While the former class traditionally involves large-scale amplification chains, the latter class places high demand on the spatiotemporal control of the electromagnetic laser field.
View Article and Find Full Text PDFWe demonstrate the ability to manipulate ultrashort pulses in cholesteric liquid crystals in the linear regime. We present an extensive analysis of the spectral changes undergone by 20fs pulses when propagating through band edges of cholesteric liquid crystals. The accurate quantification of the introduced optical dispersion opens the way to controlled stretching and compression of ultrashort pulses.
View Article and Find Full Text PDFOngoing research on chiral liquid crystals takes advantage of the peculiar behavior of twisted structures subject to curvature. We demonstrate the fine tunability of the characteristics of the bandgap of a cholesteric structure in which the orientation of the helix axis spatially changes. To date, the spectral resolution of the order of 6 nm, herein reached by hyperspectral imaging, has not been solved in tilted helices.
View Article and Find Full Text PDFPermanent gratings are recorded in planar-aligned dye-doped nematic liquid crystal cells under visible light illumination. By increasing the irradiation intensity and exposure time, several diffraction orders of the recorded gratings are obtained in the Raman-Nath diffraction regime. By applying a dynamic transverse shear on one of the confining plates of the cell, an enhancement of the diffraction efficiency is achieved, which follows the period of the grating.
View Article and Find Full Text PDFA dynamical optical characterization of planar nematic liquid-crystal cells electrically driven through the Fréedericksz transition is presented. Our method involves applying voltage steps with different starting voltage close to the Fréedericksz threshold. Measurements are performed on cells with various thickness, from a few microns up to 180µm, and highlight the transient molecular disorder occurring close to the Fréedericksz transition.
View Article and Find Full Text PDFThe concept of a liquid crystal wedge as a tunable angular shearing interferometer is introduced and demonstrated to combine both high stability and high tunability. Different wedges are fabricated from planar aligned nematic liquid crystal cells with thickness gradients. These wedges are shown to produce stable interferograms from the polarization interference between the ordinary and extraordinary waves propagating in different directions at the output of the cell.
View Article and Find Full Text PDFWe introduce a new device for group and phase delay steering of femtosecond pulse trains that makes use of cascaded, electrically driven, nematic liquid-crystal cells. Based on this approach we demonstrate a continuously tunable optical delay line. The simple collinear implementation with no moving parts enables to shape the achievable temporal range with sub-femtosecond accuracy.
View Article and Find Full Text PDFWe report for the first time on the anticorrelated emission of high-order harmonics and energetic electron beams from a solid-density plasma with a sharp vacuum interface-plasma mirror-driven by an intense ultrashort laser pulse. We highlight the key role played by the nanoscale structure of the plasma surface during the interaction by measuring the spatial and spectral properties of harmonics and electron beams emitted by a plasma mirror. We show that the nanoscale behavior of the plasma mirror can be controlled by tuning the scale length of the electron density gradient, which is measured in situ using spatial-domain interferometry.
View Article and Find Full Text PDFWe present a practical spatial-domain interferometer for characterizing the electronic density gradient of laser-induced plasma mirrors with sub-30-femtosecond temporal resolution. Time-resolved spatial imaging of an intensity-shaped pulse reflecting off an expanding plasma mirror induced by a time-delayed pre-pulse allows us to measure characteristic plasma gradients of 10-100 nm with an expansion velocity of 10.8 nm/ps.
View Article and Find Full Text PDFWe demonstrate a simple and robust passive coherent combining technique for temporal compression of millijoule energy laser pulses down to few-cycle duration in a gas-filled hollow fiber. High combining efficiency is achieved by using carefully oriented calcite plates for temporal pulse division and recombination. Carrier-envelope phase (CEP)-stable, 6-fs, 800-nm pulses with more than 0.
View Article and Find Full Text PDFWe present the first carrier-envelope-phase stable chirped-pulse amplifier (CPA) featuring high temporal contrast for relativistic intensity laser-plasma interactions at 1 kHz repetition rate. The laser is based on a double-CPA architecture including cross-polarized wave (XPW) filtering technique and a high-energy grism-based compressor. The 8 mJ, 22 fs pulses feature 10⁻¹¹ temporal contrast at -20 ps and a carrier-envelope-phase drift of 240 mrad root mean square.
View Article and Find Full Text PDFWe investigated the carrier-envelope phase (CEP) stability of hollow-fiber compression for high-energy few-cycle pulse generation. Saturation of the output pulse energy is observed at 0.6 mJ for a 260 μm inner-diameter, 1 m long fiber, statically filled with neon.
View Article and Find Full Text PDFWe report on a compact energy-scalable device for generating high-fidelity femtosecond laser pulses based on spatial filtering through a hollow-core fiber followed by a nonlinear crystal for cross-polarized wave (XPW) generation. This versatile device is suited for temporal pulse cleaning over a wide range of input energies (from 0.1 to >10 mJ) and is successfully qualified on different ultrafast laser systems.
View Article and Find Full Text PDFWe demonstrate the generation of temporally clean few-cycle pulses at 2.1 μm by shortening of 6-optical-cycle pulses via cross-polarized wave (XPW) generation in BaF(2), CaF(2) and CVD-Diamond crystals. By combining spectra and single-shot third-order intensity cross-correlation traces in a novel Bayesian pulse retrieval technique, we measured pulse durations of 20 fs, corresponding to 2.
View Article and Find Full Text PDFWe report the generation of 4.3 fs, 1 mJ pulses at 1 kHz using a hollow-core fiber compressor seeded with circularly polarized laser pulses. We observe up to 30% more energy throughput compared to the case of linearly polarized laser input, together with significantly improved output spectral stability.
View Article and Find Full Text PDFCarrier-envelope phase (CEP) stabilization of a femtosecond chirped-pulse amplification system featuring a compact transmission grating compressor is demonstrated. The system includes two amplification stages and routinely generates phase-stable (approximately 250 mrad rms) 2 mJ, 25 fs pulses at 1 kHz. Minimizing the optical pathway in the compressor enables phase stabilization without feedback control of the grating separation or beam pointing.
View Article and Find Full Text PDFWe propose a highly efficient scheme for temporal filters devoted to femtosecond pulse contrast enhancement. The filter is based on cross-polarized wave generation with a spatially suger-Gaussian-shaped beam. In a single nonlinear crystal scheme the energy conversion to the cross-polarized pulse can reach 28%.
View Article and Find Full Text PDFThe current paradigm of isolated attosecond pulse production requires a few-cycle pulse as the driver for high-harmonic generation that has a cosine-like electric field stabilized with respect to the peak of the pulse envelope. Here, we present simulations and experimental evidence that the production of high-harmonic light can be restricted to one or a few cycles on the leading edge of a laser pulse by a gating mechanism that employs time-dependent ionization of the conversion medium. This scheme enables the generation of broadband and tunable attosecond pulses.
View Article and Find Full Text PDFCalculations are presented for the generation of an isolated attosecond pulse in a multicycle two-color strong-field regime. We show that the recollision of the electron wave packet can be confined to half an optical cycle using pulses of up to 40 fs in duration. The scheme is proven to be efficient using two intense beams, one producing a strong field at omega and the other a strong field detuned from 2omega.
View Article and Find Full Text PDFWe report on direct observation of temporal contrast degradation of short pulses amplified by optical parametric chirped-pulse amplification. We show that, despite injection seeding, quantum-noise-induced fast modulations (< 50 ps) of the temporal profile of the pump pulse are imprinted on the spectrum of the amplified chirped pulse and give rise to a large picosecond pedestal in the time domain.
View Article and Find Full Text PDF