Publications by authors named "Aurelie Hanoteau"

Article Synopsis
  • Scientists are studying new treatments for solid tumors that don't always work well; they think combining radiation with certain drugs can help the immune system fight the cancer better.
  • In experiments with mice, they tested different combinations of treatments and found that using a mix of radiation and two specific drugs, along with existing immune checkpoint inhibitors, was super effective.
  • The best combination got rid of over 70% of tumors and helped the mice live longer because it improved the immune system's ability to remember and fight the cancer.
View Article and Find Full Text PDF

Immunotherapeutic treatments in head and neck cancer clinical trials include cancer vaccines targeting foreign viral antigens or mutational neoantigens derived from cancer-expressed proteins. Anti-tumor immune responses place cancer cells under selective pressure to lose or downregulate target antigens; therefore, vaccination against virus- or host- "driver" oncogenes are proposed as a strategy to overcome immune escape. Herein, we demonstrate the impact of immunogenic viral antigens on anti-tumor response and immune editing in MOC2-E6E7, a syngeneic murine oral cancer cell line expressing HPV-16 E6 and E7 oncoproteins.

View Article and Find Full Text PDF

Background: Chemoradiotherapy (CRT) remains one of the most common cancer treatment modalities, and recent data suggest that CRT is maximally effective when there is generation of an anti-tumoral immune response. However, CRT has also been shown to promote immunosuppressive mechanisms which must be blocked or reversed to maximize its immune stimulating effects.

Methods: Therefore, using a preclinical model of human papillomavirus (HPV)-associated head and neck squamous cell carcinoma (HNSCC), we developed a clinically relevant therapy combining CRT and two existing immunomodulatory drugs: cyclophosphamide (CTX) and the small molecule inducible nitric oxide synthase (iNOS) inhibitor L-n6-(1-iminoethyl)-lysine (L-NIL).

View Article and Find Full Text PDF

Cancer-induced myeloid-derived suppressor cells (MDSC) play an important role in tumor immune evasion. MDSC programming or polarization has been proposed as a strategy for leveraging the developmental plasticity of myeloid cells to reverse MDSC immune suppressive functions, or cause them to acquire anti-tumor activity. While MDSC derived from murine bone marrow precursor cells with tumor-conditioned medium efficiently suppressed T cell proliferation, MDSC derived from conditioned medium in presence of TGF-β1 (TGFβ-MDSC) acquired a novel immune-stimulatory phenotype, losing the ability to inhibit T cell proliferation and acquiring enhanced antigen-presenting capability.

View Article and Find Full Text PDF

The tumor immune microenvironment (TIME) has recently been recognized as a critical mediator of treatment response in solid tumors, especially for immunotherapies. Recent clinical advances in immunotherapy highlight the need for reproducible methods to accurately and thoroughly characterize the tumor and its associated immune infiltrate. Tumor enzymatic digestion and flow cytometric analysis allow broad characterization of numerous immune cell subsets and phenotypes; however, depth of analysis is often limited by fluorophore restrictions on panel design and the need to acquire large tumor samples to observe rare immune populations of interest.

View Article and Find Full Text PDF

An important question is how chemotherapy may (re-)activate tumor-specific immunity. In this study, we provide a phenotypic, functional and genomic analysis of tumor-specific CD8 T cells in tumor (P815)-bearing mice, treated or not with cyclophosphamide. Our data show that chemotherapy favors the development of effector-type lymphocytes in tumor bed, characterized by higher KLRG-1 expression, lower PD-1 expression and increased cytotoxicity.

View Article and Find Full Text PDF

In theory, the immunotherapy of cancer should induce the selective destruction of cancer cells and a long-term specific protection, based on the specificity and memory of immunity. This contrasts with the collateral damages of conventional therapies and their toxic effects on host tissues. However, recent data suggest that chemotherapy may potentiate ongoing immune responses, through homeostatic mechanisms.

View Article and Find Full Text PDF

In the last decade, a growing body of evidence has highlighted the major role of cancer immunosurveillance. The immune system can recognize tumor cells and keep them under check for long period of time, but is impeded by escape mechanisms induced by the tumor itself. Interestingly, the efficacy of chemotherapy has been shown to depend on the immune response, which in turn is potentiated by chemical agents, creating a positive feedback loop leading to long term tumor resistance.

View Article and Find Full Text PDF

There is increasing evidence that the effect of chemotherapy on tumor growth is not cell autonomous but relies on the immune system. The objective of this study was therefore to decipher the cellular and molecular mechanisms underlying the role of innate and adaptive immunity in chemotherapy-induced tumor rejection. Treatment of DBA/2 mice bearing P815 mastocytoma with cyclophosphamide induced rejection and long-term protection in a CD4- and CD8-dependent manner.

View Article and Find Full Text PDF